Manual Chamber Sampling Strategies to Help Account for Temporal Variability of Nitrous Oxide Emissions from Agricultural Cropping Systems

Neville Millar and G. Philip Robertson

W.K. Kellogg Biological Station, Michigan State University
Dept. of Plant, Soil and Microbial Sciences, Michigan State University
Overview

• Choice of experimental design
 Improve ability to identify treatment effects

• Temporal variability
 Scales and Patterns

• Sampling Strategy
 Timing, Frequency, Logistics
The choice of experimental design can enhance or can weaken a study’s ability to detect treatment differences

• A number of studies address technical challenges of measuring GHG fluxes in the field

• Less attention towards statistical challenges of analyzing flux differences through time and across experimental treatments

• Very few studies investigate sampling strategies that maximize probability of detecting flux differences across treatments*

* Statistical power
Experimental Design: Key decisions

Key decisions in designing and analyzing field experiments include:

• How many plots per treatment
• Should plots be blocked
• If plots are blocked, how should they be delineated
• How many chambers within each plot
• How many samples per chamber closure to calculate flux rate

Statistical power can be greatly affected by the decisions made
Flux variability: Breakdown of sources

- Three experimental sites in Michigan: RCBD; 6 replications
- N$_2$O sampling: Manual Chambers (2-3 week sampling intervals)
- Sources of flux variability: Restricted Maximum Likelihood

Percent of total variance in N$_2$O flux rates attributed to different variability sources

Residual variance reflects variability in different chambers at different time points

Total variability of fluxes dominated by small-scale spatio-temporal variations at < 1 m2 and measurement error sources

Kravchenko and Robertson 2014. In review
Flux variability: Optimizing plot and chamber numbers

<table>
<thead>
<tr>
<th>Combination</th>
<th>Power %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plots</td>
<td>Chambers per plot</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>

Effect of the number of plots and chambers on statistical power:

Assumes 18 chambers per treatment and 50% difference between mean CO₂ flux rates of two treatments with α of 0.05.

The effect of chamber number per plot for comparing N₂O flux difference between two hypothetical treatments

Assumes six fold difference in N₂O flux between treatments with 6 replicated plots

Kravchenko and Robertson 2014. In review
Flux variability: Suggestions for increased statistical power

- Increase the number of replicate plots per treatment over the number of chambers per plot
- Maximize the number of chambers per plot when number of replicate plots becomes limiting
- Maximize the number of gas samples per chamber to calculate flux rate
- Consider repeated measures analysis. Helps solve autocorrelation issues*
- Consult a statistician

* Measurements from same chamber are more similar to one another than measurements from other chambers and measurements closer in time more similar to one another than measurements separated by a longer time
Temporal Scales and Patterns

• What are the temporal scales of interest in cropping systems?
 \textit{Sub-daily, Growing season, Multi-year rotation}?

 \textbf{Can manual chambers address variability at relevant scales?}

• Appropriate sampling times and data interpolation requires knowledge of temporal emissions patterns at varying scales in the system of interest

 \textbf{Can we characterize these patterns?}
Temporal Patterns: Types

Pennock et al. (2006). Adapted from Brumme et al. (1999)
Temporal Patterns: Summary

Background:
• Low overall emissions - no obvious link to climate or other control
• Emissions pattern essentially random

Seasonal:
• Variable low-medium emissions with ‘gradual’ increases and decreases
• Emissions pattern linked to environmental conditions

Event + Seasonal:
• Seasonal pattern interrupted by several discrete pulses of N\textsubscript{2}O
• Pulses attributed to abrupt environmental change or management intervention
Temporal Patterns: Suggestions

• **Know your question**
 Are you testing differences among experimental treatments or attempting to construct an annual flux for GHG accounting purposes

• **Know your system!**
 Which pattern ‘operates’ at your location?

• **Until underlying pattern established it may be appropriate to sample according to event + seasonal type pattern***
 - Inclusion/exclusion of major flux events can lead to over/under estimation of the seasonal mean and total seasonal emissions
 - Few pulses with short duration reduce likelihood of capturing event

• **Couple background sampling (e.g., bi-weekly) with more frequent samplings (e.g., daily) during periods when emissions potentially higher**

* Depends on research goals – e.g., long-term research investigating inter-annual variability and / or comparisons of widely varying systems may require other approaches
Temporal Patterns: Event + seasonal sampling

Michigan: Corn-Soybean-Wheat rotation

N_2O flux (g N_2O-N ha$^{-1}$ day$^{-1}$)

C-S-W, S-W-C, W-C-S

Millar et al. in preparation
Interpolation of the sporadic daily flux measurements made throughout the experimental period is required to calculate cumulative emissions

- Linear interpolation (i.e., the trapezoidal rule)
 - Simplest, most common and reproducible
 - Assumes observations are good estimate of average daily flux*

- Estimating duration and magnitude of emissions on un-sampled days
 - Correlations between fluxes and controlling factor (e.g., Soil T and WFPS)
 - Intermediary between interpolation and more complex modeling

Lack of information on duration and magnitude of event-based emissions and the diurnal pattern of emissions is a major limitation to temporal interpolation

* May not be valid if pronounced diurnal pattern or for short duration emission events
Christensen et al. (1996): Vegetable crops in Denmark
- Multiple methods (chambers, FTIR, eddy covariance): 9 day comparison
- ≤18% variation in mean emissions between chamber and other methods

Smith and Dobbie (2001): Ryegrass in Scotland
- Manual (3-7 day) vs automated (8.0 hr): 7-48 day comparison
- 14% higher from automated. Not significant
- Improved correlation with manual sampling every day post N fertilization

- Automated (6.0 hr). 230 days (average daily N₂O emissions sub sampled)
- Sub-sampling every 4-8 days: within~ ±20% of ‘expected’ value

Evidence indicates manual chambers appropriate for long-term emissions estimates
Diurnal variability: No, Yes, Maybe, Sometimes?

- Flux values from manual sampling strategies typically assumed to be conservative and/or representative of average daily flux. ARE THEY?

Important for estimates of longer-term cumulative emissions

- Knowledge of the existence of diurnal patterns may improve understanding of origin of N$_2$O production under various conditions.

- Understanding of cause of transient fluxes may aid in identifying N$_2$O mitigation opportunities, and increase predictive accuracy of models.
“There is no short time during a 24-h period that is always satisfactory for assessing the amount of N\textsubscript{2}O evolved during that period”
Diurnal variability: What the literature tells us

Peak emissions coincidental with temperature:
Emissions originate in the upper soil

Peak emissions lag temperature:
Emissions from greater depth

Night time emissions peak:
Emissions from 20—30 cm and topsoil

Grazed fertilized grasslands

Smith et al. (1998)
Diurnal variability: Evidence from MI studies

Continuous Corn

Corn-Soybean

Corn-Soybean

Native Grass

GLBRC N₂O Automated: June 9-15, 2012
Diurnal variability: Suggestions

Know your system!

• Determine fluxes multiple times (≥ 3) in a day from varying treatments at various times of year (e.g., at times that ‘display’ background, seasonal and event type fluxes)

• Coincide with ancillary measurements (e.g., soil temperature and soil moisture [varying depths]) to generate relationships

• Based on results, identify appropriate time period for daily (one time) gas sampling that best represents average/conservative daily flux
Place chambers to capture potential variability of fluxes within single treatment due to management practice?

Characterize and assign micro-topographic landscapes within a treatment plot

For example, due to:

- Fertilizer banding
- Strip tillage
- Drip irrigation

1. Determine relative area (%) covered by specific topography
2. Calculate flux based on weighted average
Plantain in Puerto Rico

N application and timing (growth months)

- Drip irrigation: (1 - 4)
- Hand applied: (5 - 8)
- Foliar: (9 - 12)
Plantain: Chamber placement for spatial coverage

Top view

Cross section

3 x chamber per ‘micro-site’
(in row [close to plant], between plants, in alley)

3 x ‘micro-sites’ per treatment

2 x treatments (low N, high N)

18 (3 x 3 x 2) chambers
Field sampling: Logistical considerations

Trade-offs and inter-reliance between:

- Total number of chambers to sample from
- Time taken to sample each chamber
- Number of gas samples per closure (3, 4, more)
- Time interval between sampling rounds (e.g., 5, 10, 15 mins.)
- Sampling route
- Ancillary measurements
Field sampling: Suggestions

Recommendations:

• Prepare sample vials in order of collection in the field
• Place lids / vials alongside chambers before sampling
• Take chamber height/volume measurements before sampling
• Allow about 1 minute per sampling per vial
• Allow extra time for 1st sampling round (i.e., lid deployment)
• Allow extra time for sampling rounds with ancillary measurements (e.g., soil temp and water content)

About 15-20 chambers per sampler per sampling event
General Suggestions

- Choose experimental design and sampling strategy to maximize probability of detecting flux differences across treatments.
- Sample according to event + seasonal type pattern, unless experimental objectives dictate otherwise.
- Conduct sampling to determine diurnal variability of system at various times of year when emission patterns are likely to vary.
- Account for management practice within individual treatments by appropriate chamber placement.
- Do not sacrifice quality of sampling strategy for quantity of samples.
Thank You

Questions