Measurement strategy to quantify the effect of management practices on soil N_2O emissions.

Philippe Rochette
Summary

• Background

• Strategy for quantifying the impact of management practices
 – Set realistic objectives
 – Minimize “noise”
 – Identify changes to N₂O production and transfer
 – Adapt chamber design and deployment

• My Examples
 – N fertilization
 – Tillage

• Your Examples...
Background

Chambers

• Micromet studies were “method-oriented”
• Chamber studies were “results-oriented”
• Lack of rigor for chamber use
• Low confidence in many datasets
• Consensus for the need for a Standard methodology

Micromet

– Standard methodology
– Mostly CO$_2$ and H$_2$O
Background

Micromet

- Energy budget closure
- Horizontal homogeneity
- Same fields

≈40 papers on N₂O since 2008
 - Fast-response sensors
 - Eddy covariance

Value your chamber measurements;
They have been/are/will be important
Methodology for addressing Impacts of Farming Practices on Soil N_2O

Three Steps

1- Set realistic objectives

2- Minimize the "Noise"

3- Anticipate impact and adapt chamber design and deployment
Methodology for addressing Management Impacts on Soil N_2O

1-

Set realistic objectives

Chamber limitations
NSS Chamber Techniques

• **Strengths**
 - Small spatial scale
 - Scale closer to that of N_2O processes
 - High sensitivity
 - Few assumptions (WYSIWYG)
 - Adaptability
 - Simple
 - Low costs
 - Comparison of situations

• **Weaknesses**
 - Intrusive
 - Labor-intensive
 - Small spatial scale
 - Short duration (non automated)
Methodology for addressing Management Impacts on Soil N$_2$O

1-

Set realistic objectives

Chamber limitations

- Are NSS chambers the adequate tool?
 - Situation that is too complex?
 - Spatial and temporal variability
 - Grazing animals
 - Snow-covered or saturated soil conditions

Resources

- Do I have enough resources?
 - # replicates (4)
 - # treatments vs # sites
 - Site location

Success or failure of an experiment often depends on decisions made prior to field work
Methodology for addressing Management Impacts on Soil N_2O

Minimize the "Noise"

Site selection
N$_2$O controls - Conceptual Model

Autotrophic Nitrification

Anaerobic Denitrification

Distal factors

Proximal factors

Substrates

Practices
- tillage
- C inputs
- liming
- cover crop
- irrigation
- drainage
- crop type
- fallow
- fertilization

Physics & Chemistry
- redox
- temp.
- H$_2$O
- pH

Soil & Climate
- texture
- landscape
- climate
- organic matter
- porosity

N$_2$O Production & transfer
Environment often has a dominant impact on soil N_2O

Summary of Canadian Data

- **Cumulative N_2O emissions** ($n=1300$)
 - Soil organic C
 - Precipitations
 - Air temperature
 - Sand %
 - Soil pH

 71% of the variability in N_2O emissions

Variations in soil environmental conditions may mask practice-induced emissions

- Climate
- Soil Type

64% of the variability in EF
Methodology for quantifying Management Impacts on Soil N\textsubscript{2}O

Minimize the “Noise"

Site selection

- Is the site too heterogeneous?
 - Texture
 - Drainage

Previous management may mask practice-induced emissions by raising baseline emissions

- Perennials tilled in the year before?
- No-till that was plowed?
- Heavy manure applications?
- Recently tile drained?
- Any previous practice that could still impact?
Methodology for quantifying Management Impacts on Soil N_2O

Minimize the “Noise”

- Site selection
- Chamber Size
- Field operations

- Can I include sites with contrasting soil types?
- What is the smallest scale at which I need information?

At each experimental site, remove as much noise as possible in order to isolate the treatment effect.
Methodology for quantifying Management Impacts on Soil N₂O

Anticipate impact and adapt chamber design and deployment

Substrate & Environment

- How does the practice impact on:
 - C and N amounts, type and location?
 - Soil bulk density, water content, temperature, etc.?
- Ties up N in soil organic matter
- Decreases C availability
- Lowers temperature
- Keeps substrates closer to surface

Conventional tillage

No tillage

- Because substrates are located at different depths, they are exposed to different diurnal temperature cycles and N₂O transfer time to the surface is also different
- Diurnal pattern in surface emissions may differ between no-till and conventional tillage
Are diurnal pattern of emissions in phase?

- Substrate located at different depths
- Substrate exposed to different temperatures
- Temporal patterns of N_2O production and diffusion to the soil surface could be affected
- **Determine the diurnal pattern**

- This also has an impact on where in the soil profile to measure pertinent variables (temperature, water content, microbial activity, etc.)
Efficient Use of Organic N Sources

Does organic N result in greater N_2O emissions than synthetic N?

• Input of available organic C for denitrification

• Anoxic hotspots

• Lower mineral N content

• May decrease soil bulk density

• C substrates
 - Soil exceptionally rich in SOM?
 - Previous practices that may confound the N_2O response?

• N substrates
 - Different timing of release?
Are seasonal emissions patterns in phase?

- Plan sampling schedule so that both emission curve is equally described.
Methodology for quantifying Management Impacts on Soil N_2O

Anticipate impact and adapt chamber design and deployment

- Substrate & environment
- Chamber geometry
- Chamber deployment

- How does the practice impact on spatial pattern of emissions?
 - Adapt chamber geometry

- ... and on spatial variability?
 - Consider decreasing air samples per chamber deployment
 - ... but check linearity
 - Using a linear model may bias comparison between treatments...

- Does the practice impact on chamber performance?
 - Seal?
 - Soil-Headspace gas transfer?
 - Others?
No-Till vs Molboard plow

- Moldboard Plow (20 cm)
- Creates preferential flow
- Potential leaks
- Deeper collars on conventional tillage than on no-tillage shortly after tillage
Conclusions

• Start with realistic goals
• Minimize noise
• Account for impacts of practice on spatial and temporal patterns of N$_2$O emission
 - C and N substrates
 - Environment
• Account for impact of practice on chamber performance
Methodology for quantifying Management Impacts on Soil N_2O

3-

Anticipate impact and adapt chamber design and deployment

Substrate & Environment

- How do differences in substrate placement depth can impact on the temporal pattern of emissions?