Agricultural land and water productivities; Tradeoffs and policies

Theib Oweis
Director, Integrated Water and Land Management Program, ICARDA, Amman, Jordan

Presentation at the Global Soil Security Symposium, May 19-21, 2015, Texas A&M University, College Station, TX, USA
A region with multiple stresses

- Physical water scarcity
- Land degradation
- Groundwater depletion
- Frequent drought
- Salinity
- Poverty
Water scarcity intensifying

- Many countries with chronic water scarcity
- Water for agriculture in dry areas is declining
- Climate change adds to the problems
- Energy competes
- Consequences
New water ... limited !!!!

- Surface, mostly tapped
- Ground, over exploited
- Marginal-quality, small amounts, environment, health
- Desalination, costly, environment, transport
- Water transfer, cost and politics
The challenging equation

- Rapid population growth – shrinking resources

- Food security dimensions
 - Availability
 - Accessibility
 - Nutrition
 - Safety

 to people

HLPE report on water and food security

- More food needed with less resources (esp. water)
Conventional scarcity coping strategies: insufficient !!!

1. Increasing yield (land productivity)

Great !! but needs more water

Which is not available
2. Increasing irrigation efficiency
Recycling at scale: mostly paper saving

Storage

Precipitation

Runoff recoverable

Evaporation Losses

Transpiration

Irrigation

Seepage recoverable

Drainage

Partially recoverable

Quality losses

Deep percolation

To ground water recoverable
irrigation efficiency & modernizing systems

- Efficiency reflects the performance of irrigation system and not the return to water
- Ignores recoverable losses and wrongly used to judge the whole farm water management
- Huge investment in modernizing irrigation systems aims at water savings, not real!!!
- Modern systems increase productivity for other reasons but at cost
from efficiency to productivity
Water productivity: the concept

\[WP = \text{Unit of water consumed} \]

What return ??
- Biomass, grain, meat, milk (kg)
- Income ($)
- Environmental benefits (C)
- Social benefits (employment)
- Energy (Cal)
- Nutrition (protein, carbohydrates, fat)

What water ??
- Quality (EC)
- Location (GW depth)
- Time available

Consumed (depleted)
- Evaporation
- Transpiration
- Quality deterioration
Potential water productivity improvement

Biological WP kg/m³

<table>
<thead>
<tr>
<th></th>
<th>Beef</th>
<th>Lentil</th>
<th>Wheat</th>
<th>Potato</th>
<th>Olive</th>
<th>Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.03</td>
<td>60</td>
<td>1000</td>
<td>660</td>
<td>7000</td>
<td>3450</td>
<td>1120</td>
</tr>
<tr>
<td>0.1</td>
<td>210</td>
<td>3500</td>
<td>1500</td>
<td>3000</td>
<td>1150</td>
<td>2240</td>
</tr>
<tr>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Economic WP $/m³

<table>
<thead>
<tr>
<th></th>
<th>Beef</th>
<th>Lentil</th>
<th>Wheat</th>
<th>Potato</th>
<th>Olive</th>
<th>Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>60</td>
<td>1000</td>
<td>660</td>
<td>3000</td>
<td>3450</td>
<td>1120</td>
</tr>
<tr>
<td>0.3</td>
<td>210</td>
<td>3500</td>
<td>1500</td>
<td>1150</td>
<td>2240</td>
<td>1120</td>
</tr>
<tr>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nutritional WP Protein gr/m³

<table>
<thead>
<tr>
<th></th>
<th>Beef</th>
<th>Lentil</th>
<th>Wheat</th>
<th>Potato</th>
<th>Olive</th>
<th>Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>60</td>
<td>1000</td>
<td>660</td>
<td>7000</td>
<td>3450</td>
<td>1120</td>
</tr>
<tr>
<td>90</td>
<td>210</td>
<td>3500</td>
<td>1500</td>
<td>3000</td>
<td>1150</td>
<td>2240</td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nutritional WP Calories/m³

<table>
<thead>
<tr>
<th></th>
<th>Beef</th>
<th>Lentil</th>
<th>Wheat</th>
<th>Potato</th>
<th>Olive</th>
<th>Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>60</td>
<td>150</td>
<td>150</td>
<td>120</td>
<td>30</td>
<td>8</td>
</tr>
<tr>
<td>1000</td>
<td>210</td>
<td>3500</td>
<td>1500</td>
<td>3000</td>
<td>3450</td>
<td>2240</td>
</tr>
<tr>
<td>660</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1150</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1120</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>210</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3450</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2240</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nutritional WP Potential Water Productivity Improvement

<table>
<thead>
<tr>
<th></th>
<th>Beef</th>
<th>Lentil</th>
<th>Wheat</th>
<th>Potato</th>
<th>Olive</th>
<th>Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>10</td>
<td>50</td>
<td>50</td>
<td>10</td>
<td>10</td>
<td>8</td>
</tr>
</tbody>
</table>
Scales and drivers to increase WP

- **At the basin level:**
 - competition among uses (Env., Ag., Dom.)
 - conflicts between countries
 - Equity issues

- **At the national level:**
 - food security
 - hard currency
 - sociopolitics

- **At the farm level:**
 - maximizing economic return
 - Nutrition in subsistence farming

- **At the field level:**
 - maximizing biological output
Tradeoffs between Land & water productivities

\[y = -0.4278x^2 + 4.7328x - 0.543 \]

\[R^2 = 0.7611 \]
Supplemental irrigation for rainfed systems

- Substantial yield increases
- Highest water productivity
- Modification of crop calendar (CC)

<table>
<thead>
<tr>
<th>Sowing</th>
<th>Deficit</th>
<th>Full</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grain yield (t/ha)</td>
<td>Water productivity (Kg/m3)</td>
<td></td>
</tr>
<tr>
<td>rainfed</td>
<td>3.46</td>
<td>0.96</td>
</tr>
<tr>
<td>Sowing SI</td>
<td>5.31</td>
<td>3.7</td>
</tr>
<tr>
<td>Deficit SI</td>
<td>5.91</td>
<td>2.39</td>
</tr>
<tr>
<td>Full SI</td>
<td>6.21</td>
<td>1.27</td>
</tr>
</tbody>
</table>
Water harvesting for rangelands

- Low cost WH technologies integrated
- Mechanization, laser guided contouring, direct seedling planting
- Water stored in soils and aquifer
- Grazing management
- Combating desertification
Intensification of Irrigated systems

- Increasing water productivity
- Improving surface irrigation
- Modifying cropping patterns
Policies to foster change

- Cropping patterns: change to be more water/land productive
- Land / water: optimize for the more limiting resource
- Indicators: efficiency but also productivity
- Scale: from local to regional & global
- Secure virtual water free trade
It is a prime time for change !!!!

Thank you