About Us | Help Videos | Contact Us | Subscriptions
 

Abstract

 

This article in AJ

  1. Vol. 103 No. 4, p. 1198-1204
     
    Received: Feb 8, 2011
    Published: July, 2011


    * Corresponding author(s): jspecht1@unl.edu
 View
 Download
 Alerts
 Permissions
 Share

doi:10.2134/agronj2011.0051

Nodal Leaf Area Distribution in Soybean Plants Grown in High Yield Environments

  1. T. D. Setiyonoa,
  2. A. M. Bastidasb,
  3. K. G. Cassmana,
  4. A. Weissc,
  5. A. Dobermannd and
  6. J. E. Specht *a
  1. a Dep. of Agronomy and Horticulture, Univ. of Nebraska, Lincoln, NE 68583-0915
    b Monsanto Produccion y Servicios, Col. Desarrollo Santa Fe, 01376 Mexico, D.F
    c School of Natural Resources, Univ. of Nebraska, Lincoln, NE 68583-0728
    d International Rice Research Institute (IRRI), Manila, Philippines

Abstract

At any given time, the leaf area index (LAI) of a soybean [Glycine max (L.) Merr.] crop consists of the summed contributions of each trifoliolate leaf present at each main stem node and on branches. No data are available on nodal LAI distributions in modern indeterminate (IN) or semi-determinate (SD) cultivars grown in irrigated, early-planted, high-yield production systems. The impact of stem termination type and row spacing on that distribution was investigated in such environments at Lincoln, NE in 2003, 2004, and 2005. Trifoliolate LAI at each stem node followed a temporal pattern of rapid increase (after leaf initiation) to a peak before declining due to senescence-driven leaf abscission, thus emulating, on a shorter time-scale, the canopy LAI pattern. The post-peak decline in nodal LAI was rapid in nodes initiated prebloom (i.e., nearly 100% abscission before seed-fill), but was gradual in nodes initiated after pod initiation (i.e., little abscission before plant maturity). Nodal LAI peaked at the eighth node of the IN cultivar, but rapid leaf expansion at preflowering nodes of the SD cultivar led to a broad peak spanning the fifth to eighth node. Simulation of the Beer-Lambert law of light attenuation in both canopies revealed that light penetration was deeper in the IN canopy than in the SD canopy. Although higher plant density suppressed branching (and thus branch leaf area) in the SD cultivar, this was not observed in the IN cultivar. These findings suggested that nodal LAI development can be used to mechanistically model canopy LAI.

  Please view the pdf by using the Full Text (PDF) link under 'View' to the left.

Copyright © 2011. Copyright © 2011 by the American Society of Agronomy, Inc.