A CHEAP AND CONVENIENT EXPERIMENTAL SILO.¹

H. L. Westover and Samuel Garver.

The utilization of certain forage crops for silage has been practiced for many years, corn being one of the first crops to be use in this way. In the early days of silage making, little was known regarding the ripening changes that took place in the silo and the conditions necessary for preserving the material properly were not well understood. As a result, the material that was put up frequently spoiled. At the same time, there was considerable disagreement among feeders as to the real value of silage from a feeding standpoint. As the conditions necessary for the proper preservation of silage became better understood and as a fuller appreciation of its true value as a feed developed, an increased demand for silage naturally followed. This eventually led to attempts to utilize other crops in this manner, particularly in regions where corn does not succeed and also in those sections where considerable spoilage results from unfavorable weather conditions at hay-making time.

Undoubtedly there are many plants, in addition to those at present being used, that could profitably be utilized for silage. In order to determine just what plants can be satisfactorily ensiled and under what conditions the best results may be obtained, some type of experimental silo is needed that will make it feasible to work with a large number of containers at a minimum cost. In the past, much of the work in trying new crops for silage has been with the farm silo, but this method is open to certain objections, the most obvious of which are the financial losses entailed when the contents spoil, as frequently happens, and the very limited number of experiments that it is possible to conduct.

Several State experiment stations have tried various methods for ensiling crops in small quantities and have reached the conclusion that silage in small containers is equal to that in large silos as judged by appearance and chemical analysis, where the conditions of ensiling are properly controlled. The silages made at these stations for experimental purposes fall into two general groups, chopped materials