hay into a loose windrow with a majority of the leaves inside. Four years' experience with this method at the Michigan Experiment Station shows that the use of the rake immediately after cutting or within two or three hours, while the leaves are still in a green condition, gives best results. In good weather, well-cured alfalfa hay is secured in from 18 to 24 hours with one turning of the windrow.

8. I would seriously question Mr. Willard's statement that, "It would seem that as a usual practice it would be best to allow hay to cure in the swath as long as possible without allowing the leaves to become brittle, using the tedder where desirable to loosen the swath and equalize the exposure, and then put the hay in the windrow or cock to complete curing. This is the common practice of the best farmers in putting up legume hay." The most improved and effective way of curing alfalfa and other legume hay is in the windrow or cock before a long period of curing in the swath has taken place. To use a tedder on alfalfa or any other legume hay is, in my estimation, an exceedingly undesirable practice. No more effective machine for knocking off leaves has been developed, and the objective in getting best results in curing hay is to retain the leaves.—

J. F. Cox, Professor of Farm Crops, Michigan State College, East Lansing, Mich.

CONCERNING THE CURING OF LEGUME HAY

I have noted with interest the paper in this Journal for May, 1926, covering the results of certain laboratory experiments conducted by Professor C. J. Willard of Ohio State University, with the intention of throwing more light on the curing of legume hay.

In this article Professor Willard takes issue with a pretty generally accepted principle, that leaves, under the right conditions, assist the stems of forage plants in exuding moisture during the hay curing process. It seems very doubtful whether such a widely accepted theory, particularly in its practical application, can be upset by laboratory experiments with a few stems of alfalfa, in no way approximating conditions of hay in the field. As Professor Willard states, many of the figures are inconsistent and "probably due to various experimental errors." In general, they support the belief that transpiration does continue after the hay is cut.

The danger of the assertions made in his article lies not so much in the upsetting of beliefs in certain plant physiological actions as in the applications that are made of plant physiology to practical hay making in the field.

Two things are of importance in the making of quality hay eco-