COMPOSITION AND ECONOMIC POSSIBILITIES OF THE COTTON BUR

K. S. Markley

INTRODUCTION

For many years the South has been in need of some cheap mechanical means of harvesting the annual cotton crop which has led to the designing and testing of many types of cotton picking devices. These include complicated electric pickers, such as the Stukenborg electric cotton picker (1), suction pickers, and the comparatively crude sledding devices (2). It was not until 1926, however, that due to the frosted condition of the Oklahoma crop and the low price of cotton that any considerable portion of the cotton crop was harvested by sledding.

It has been variously estimated (3) that in 1926 one to four million bales of cotton were harvested by sledding and snapping. In this mode of harvesting the whole boll is removed from the cotton plant and sent to the gin where the first process consists in separating the bur from the cottonseed preparatory to ginning. This practice has resulted in an entirely new set of economic conditions for the cotton industry to solve, not the least of which, is the profitable disposal of the burs now being accumulated at the gins in Texas and Oklahoma.4

Available statistics indicate that for each bale of cotton sledded, 800 to 900 pounds of burs are removed from the land to accumulate at the gins, one county in Texas producing over 70,000 tons in 1926. The disposal of the burs by means other than burning them at the gins is a pressing problem. The Oklahoma Agricultural and Mechanical College at Stillwater, Oklahoma, and the Texas Agricultural and Mechanical College at College Station, Texas, have begun work on this problem. Fertilizing experiments both with the burs themselves and with the ash obtained by burning them, mulching of potatoes, small fruits, and berries and liquid manure absorption in the feed lot are included in the program. The U. S. Bureau of

1Contribution from the Bureau of Standards, Washington, D. C. Publication approved by the Director of the Bureau. Received for publication August 23, 1928.

2Formerly Associate Chemist, National Bureau of Standards; now Associate Biochemist, Bureau of Plant Industry, U. S. Dept. of Agriculture, Washington, D. C.

3Reference by number is to "Literature Cited," p. 1100.

4An excellent survey of these problems and the economics involved is given in two articles by Eugene Butler in Progressive Farmer (Miss. Valley Ed.), 42: 892 (1927) and (Tex. Ed.) 42: 865 (1927).

Published October, 1928

1937