Red clover was probably introduced into what now constitutes the United States by the early English colonists and has been an important crop throughout the agricultural history of the nation. Its use increased and spread with the development of the country and its production offered no serious problems for decades. The chief reasons for this popularity were (1) its suitability under favorable climatic conditions for growth on fairly well-drained new and rich land, and (2) the home production of seed. In the early agricultural history of this country there was little traffic in red clover seed except the interchanges made locally. However, as the fertility of the soil became depleted and the soil acidity increased, serious difficulties in red clover production were encountered. Many of these have been overcome partly at least by better drainage, improved fertility, application of lime, inoculation, and better cultural conditions, and, in certain cases the elimination of disease and insects. Attention has been more recently called to the importance of particular strains as a factor in successful production of red clover. Attention has been focused on this phase primarily because of increased clover failures regardless of the care exercised in meeting the various specific requirements for success and secondarily because of the advance in our knowledge of inheritance in plants.

More specifically, New York farmers experienced only occasional failures in red clover production 40 to 50 years ago, but after 1900 the percentage of clover failures increased very rapidly and, as a consequence, the production of red clover was materially affected. In fact the condition became so serious that many farmers refused to run the risk of seeding red clover. This same condition was found in other states as well, especially the states next the seaboard and to a less extent in states farther removed from ports and those which were producing more clover seed within their own borders.

The many clover failures, the demand for an explanation of these failures, the importance of the crop as a legume feed for dairy cattle particularly, and its value as a soil builder stimulated many experiments looking for a solution of these problems.

1Contribution from the Department of Plant Breeding, Cornell University, Ithaca, N. Y. Published as Paper No. 177 of the Department. Received for publication January 28, 1931.

2Assistant Professor.