27° to 31° prevailed over the northern and western parts of the state also, but no more than a trace of floret sterility was observed. The explanation no doubt lies in the fact that none of the varieties, including the Early Blackhull, were in head at the time, whereas in the affected area the Early Blackhull had just headed and the others were beginning to head when the freeze occurred. Thus, evidence is lent to the theory that the floret sterility was caused by freezing injury to some delicate part of the wheat flowers at a particular stage of development. The fact that some florets were sterile while others on the same head and sometimes in the same spikelet developed normal kernels indicates that the wheat flower remained for only a very short time in the stage which was most susceptible to freezing injury.

The type of floret sterility described here is very unusual in Kansas. However, it may be an important factor in the future in connection with the development of extremely early varieties of wheat which, though possibly more desirable from the viewpoint of escaping drouth and hot winds, may be in more danger of being overtaken in the heading stage by freezing temperatures.—F. L. Timmons and A. L. Clapp, Kansas State College of Agriculture, Manhattan, Kans.

SIMPLIFIED EQUIPMENT FOR ROD ROW THRESHER

At the summer meeting of the Corn Belt Section of the American Society of Agronomy held at Purdue University in June 1931, much interest was shown in the threshing and cleaning equipment used in the plant breeding work in the Agronomy Department. A number of agronomists and plant breeders have requested the specifications of this equipment, hence a short description will be given.

Instead of combining both thresher and blower in one machine, two separate pieces of equipment have been designed and built. In doing so an attempt has been made to effect economy, simplicity, and increased efficiency, with a minimum of danger of mixing.

ROD ROW THRESHER

Briefly, the thresher consists of a 15½-inch over-shot cylinder, 7½ inches in diameter. It is built into a wooden casing which is supported by a 15-inch base. The interior of the cylinder casing is constructed so that lodgement of grain is impossible. This also enables the machine to clean itself completely. The upper half of the casing enclosing the cylinder is hinged at one side (Fig. 1) so that it can be opened and the cylinder and concave exposed. The base on which the cylinder is supported is high enough to admit of