Recent Studies on the Genetics of the Soybean

C. M. Woodworth and L. F. Williams

In connection with the investigational work on soybeans being carried on at the Illinois Agricultural Experiment Station in cooperation with the Division of Forage Crops and Diseases, Bureau of Plant Industry, U. S. Dept. of Agriculture, the genetics of the soybean occupies a prominent place. Because of the growing interest in this new crop, particularly from the breeding standpoint, it has seemed desirable to present briefly the results of recent genetic studies. This account is divided into two parts, namely, (a) a description of new chlorophyll-deficient types, together with any available data on mode of inheritance, and (b) a discussion of new linkage relationships.

New Chlorophyll-Deficient Types

The y_4 type is a yellowish-green type found in F. P. I. 65388, a small-seeded brown bean obtained from the Division of Forage Crops and Diseases, U. S. Dept. of Agriculture. The original lot of seed was treated with radium by Doctor J. T. Buchholz, Botany Department, University of Illinois. The mutant appeared in the progeny of a plant grown from one of these treated seeds. The ratio was 22 normal to 3 yellow. Fifteen of the normal green plants were tested in the greenhouse. Of these, 4 bred true for green and 11 segregated in approximately a 3:1 ratio. The evidence seems clear, therefore, that the mutant is a simple recessive to the normal.

The y_5 type is a greenish-yellow type first observed as a mutant in the Wilson V variety. It bred true from the first. A cross was made with the Virginia variety. Two F_1 plants were produced, both normal green. Of 104 F_2 plants, 80 were normal, 24 greenish-yellow. In the F_3 generation, of 36 families grown, 12 bred true for green and 24 segregated in a 3:1 ratio.

Both y_4 and y_5 are weak, although y_5 is the better of the two. They are easily distinguished from each other in appearance. The chlorophyll of y_4 is uniformly reduced, so that the leaf surface has a uniform appearance, while in y_5 there are areas in the leaf of varying chlorophyll intensities. The leaf seems to change from yellow to green and back again as it is turned at various angles to the sun.

In the cross between y_5 and Virginia, two other pairs of genes were involved, namely, Tt (tawny vs. gray pubescence) and Rr (black vs. brown coat color). The results given in Table 1 indicate independence between these and y_5.

1Contributed by the Division of Plant Breeding, Department of Agronomy, University of Illinois, Urbana, Ill., in cooperation with the U. S. Regional Soybean Industrial Products Laboratory, U. S. Dept. of Agriculture. Published with the approval of the Director of the Experiment Station. Received for publication November 19, 1937.

2Chief in Plant Genetics, Illinois Agricultural Experiment Station, and Agent, Division of Forage Crops and Diseases, Bureau of Plant Industry, U. S. Dept. of Agriculture, respectively.