
E. H. Templin, I. L. Martin, and R. S. Dyal

THE INFORMATION presented here is part of the data obtained in a study of several important series of Red-Yellow Podzolic soils initiated in 1945 to (a) more fully characterize certain series that afford a framework of reference for the many soils of the group, (b) determine the feasibility, need, and possible bases for subdividing some of the present series so as to afford series distinctions between the midhumid major part of the forested Gulf Coastal Plain and its western drier fringe (the Post-Oak Belt), and (c) resolve correlation questions on soils developed from calcareous alluvium in the Post-Oak Belt, previously included in Leaf but now distinguished as Axtell.

The great bulk of the some 200,000 square miles of Red-Yellow Podzolic soils in the warm-temperature-humid forested part of the Gulf and Atlantic Coastal Plains (a 400,000-square-mile territory reaching from Virginia to San Antonio, Tex.) occurs under midhumid climate and vigorous dense-canopied pine-oak or pine forest. The western limit of pine approximates a mean annual precipitation of 42 to 60 inches and a P-E index of 50. It runs almost due north from near Houston, Tex., to Hugo in southeastern Oklahoma. West of this indistinct boundary is the Post-Oak Belt, a collective name for the some 13,000 square miles of mostly open-canopied and grassy scrub forest. The western limit of pine approximates 42 inches of precipitation and a P-E index of 50. It is interspersed with prairies, which occur on crops of more clayey (and more limy) formations. West of this area the eastern part of the Post-Oak Belt the forest becomes increasingly open, parklike, and interrupted by prairies, and confined to very sandy soils. In northern Texas, where temperatures are comparable to those in the midhumid areas of the Gulf Coastal Plain, the forest becomes increasingly open, parklike, and interrupted by prairies, and confined to very sandy soils. In northern Texas, where temperatures are comparable to those in the midhumid areas of the Gulf Coastal Plain, the forest becomes increasingly open, parklike, and interrupted by prairies, and confined to very sandy soils. In northern Texas, where temperatures are comparable to those in the midhumid areas of the Gulf Coastal Plain, the forest becomes increasingly open, parklike, and interrupted by prairies, and confined to very sandy soils. In northern Texas, where temperatures are comparable to those in the midhumid areas of the Gulf Coastal Plain, the forest becomes increasingly open, parklike, and interrupted by prairies, and confined to very sandy soils. In northern Texas, where temperatures are comparable to those in the midhumid areas of the Gulf Coastal Plain, the forest becomes increasingly open, parklike, and interrupted by prairies, and confined to very sandy soils. In northern Texas, where temperatures are comparable to those in the midhumid areas of the Gulf Coastal Plain, the forest becomes increasingly open, parklike, and interrupted by prairies, and confined to very sandy soils. In northern Texas, where temperatures are comparable to those in the midhumid areas of the Gulf Coastal Plain, the forest becomes increasingly open, parklike, and interrupted by prairies, and confined to very sandy soils. In northern Texas, where temperatures are comparable to those in the midhumid areas of the Gulf Coastal Plain, the forest becomes increasingly open, parklike, and interrupted by prairies, and confined to very sandy soils. In northern Texas, where temperatures are comparable to those in the midhumid areas of the Gulf Coastal Plain, the forest becomes increasingly open, parklike, and interrupted by prairies, and confined to very sandy soils. In northern Texas, where temperatures are comparable to those in the midhumid areas of the Gulf Coastal Plain, the forest becomes increasingly open, parklike, and interrupted by prairies, and confined to very sandy soils.