extending beyond the 17/8-inch comb are pulled out with special forceps. This comb is then pushed down out of the way and the fibers extending from the 13/4-inch length are pulled from the sorter. Next the 15/8-inch length, then in succession the 11/2-, 13/8-, 11/4-, 11/8-, 1-, 7/8-, 5/4-inch, and shorter lengths. Each length of fiber from the combed half of the 10 seeds is placed in a compartment for weighing. The percentage of weight for each length is obtained by the use of a percentage table.

Uniformity of length of lint is a very important fiber property, contributing to less waste and less trouble in spinning, as length is related to spinning value. Furthermore cotton is sold on grade and staple, and it is important from a marketing standpoint that successive samples taken from a bale will staple the same. Also bales going from one-variety communities should be of the same staple length. The use of the fiber sorter in the breeding of 1517 cotton at the New Mexico Agricultural Experimental Station has been very effective in producing uniform staple length bales. For many years bales coming from the El Paso market, the marketing point for the 1517 variety from District 6, Texas and New Mexico, were about 50% 11/8-inch and 50% of 1—3/32-inch in length. In recent years improved 1517, or 1517 C, was about 50% 1—5/32-inch and 50% 1/8-inch, with some bales below and a few above these lengths. Commercial classifiers have informed the writer that 1517 cotton would consistently pull the same length from sample to sample. A prime object in cotton production through the years has been to lower the percentage of the low lengths and lower the percentage of the longer lengths.

The cotton sorter already has been of value in cotton breeding work at the Institute of Genetics. It requires only hand power, a milligram balance, and combs for combing the sample prior to sorting. However, a mechanical comber previously reported (4) is used to speed up preparation of the samples for sorting.—G. N. STROMAN, Director and Formerly Agronomist, New Mexico Agr. Exp. Sta.

LITERATURE CITED


SOME CHARACTERISTICS OF AN ANNUAL WHEATGRASS1

A. triticeum is reported by Beetle and Pressley (5) to occur in Washington, Idaho, Montana, and Montana, and the list of states where it is known, Nevada should be added. The manner of its introduction and its appearance in Nevada are not known. The first annotated specimen in the Nevada Agricultural Experimentation Herbarium is June 6, 1935. As for the time of its introduction into the United States, there is information available. Hitchcock describes it as being "sparingly introduced from Russia," and other opinion holds that it was introduced as a weed with another forage species.

The taxonomy of A. triticeum is given by Pressley, Hitchcock and Beetle; the latter discusses its classification thoroughly. The investigation reported here is concerned with some of the physical and physiological characteristics of the plant which may contribute to an understanding of its ecology and to its evaluation as a potential forage and source of germ plasm for breeding purposes.

In Nevada, A. triticeum is found in a vacated lot in Reno, Nev., where this grass dominates and resists the encroachment of tumbling Russianthistle (Salsola ro- folia), cheatgrass brome (Bromus tectorum), flaxweed or tansymustard (Phyteuma officinalis), and tansymustard (Phyteuma officinalis). It is slowly spreading along fence lines and boulevards. This ability to persist and spread...