
This book fills a need that is not covered by other authors. It contains an account of the ideas underlying modern work on the statistical aspects of experimental design. The approach is somewhat unique in that the author has tried, as far as possible, to avoid statistical and mathematical technicalities and to concentrate on a treatment that will be intuitively acceptable and reasonable to the experimental worker. In an attempt to simplify, the author has dealt with concepts and principles. Detailed methods of statistical analysis receive only incidental mention since this material is available in other books on statistical methods. The author further feels that it is better for a person who has not gained a thorough mastery of statistical methods to use modern designs for their intuitive reasonableness, rather than to regard them as in some way essentially dependent on analysis of variance.

The book is generally well and simply written. It is possible for those without a background in statistics to understand and use the book as a general guide to the requirements and properties of a good experiment. Yet, it may be even more helpful in explaining the reasons and logic of well planned experiments for persons who have had some background or training in statistical methods. The coverage of the subject matter field is up-to-date and some of the more recent designs are included. The principles are well stated and described and then illustrated with a variety of examples, many of which involve agriculture. However, in some instances the trend of thought may be lost because examples referred to may have been partially covered in a previous chapter.

The text of the book is organized into two general types of coverage. The first nine chapters are concerned with general concepts and key designs. These chapters include: Preliminaries; Some Key Assumptions; Designs for the Reduction of Error; Use of Supplementary Observations to Reduce Error; Randomization; Basic Ideas about Factorial Experiments; Design of Simple Factorial Experiments; Choice of Number of Observations; and Choice of Units, Treatments and Observations. The remaining chapters deal briefly with more advanced topics such as: More about Latin Squares; Incomplete Nonfactorial Designs; Fractional Replication and Confounding; Cross-Over Designs; and Some Special Problems.

Planning of Experiments is a valuable supplement to other books on design which are primarily catalogues of designs and their analyses. It is sincerely recommended to soil scientists.—MOYLE E. HARWARD and R. G. PETERSEN, Oregon State College.


This book is described as being a textbook for courses on fruit and vegetable products. It is also intended as a useful reference on principles and production methods. Some of the new materials in this 4th edition include: freezers, juice producers, preservers, and other equipment. The book is divided into 26 chapters which material used by the author for lectures to students in food technology. The first 7 chapters introduce principles of canning as a method of fruit and vegetable preservation.

The book is somewhat uneven with respect to the detail of subject matter covered. Some phases of product processing are outdated. In discussing peas, the author makes the erroneous statement that late wrinkled-seeded varieties "often do not produce so heavily as the (early) smooth-seeded types." Other varieties included for midwest produce are outdated. In discussing peas, the erroneous statement that late wrinkled-seeded varieties produce so heavily as the (early) smooth-seeded varieties.

Regardless of these criticisms the book is a valuable guide for students in the field of food technology and canners.—J. F. BARTZ, Green Giant Co., Le Sueur.