b. Proper nouns derived from names of persons and places when used separately in the common name (Kentucky bluegrass, Merion Kentucky bluegrass, Indian ricegrass, Canada wildrye, and Japanese lawngass).

2. Do not capitalize:
 a. Common names
 (redtop, quackgrass, wheatgrass, bluegrass, bentgrass).
 b. Names derived from persons or places when used in combination with a suffix (johnsongrass, rhodesgrass, bermudagrass, dallisgrass).

A common generic and a common species name have been listed so far as practicable. When a species name is referred from one genus to another, the basis of referral has been cited. In some cases, a species within a genus has its own common name, hence a common name for the genus and species is different. The genus Muhlenbergia is known as muhly; whereas, M. schreberi has the common name nimblewill.

Admittedly, many grasses and other plants of interest in turfgrass culture have been omitted; however, it is hoped this list will promote uniformity of usage of turf plant nomenclature.

First, the scientific names, including the authority, are given in alphabetic order, followed by the common names. The second list alphabetizes the common name, which is followed by the corresponding scientific name.

The mimeographed list of species is available from Grass and Turf Investigations, Forage and Range Research Branch, Crops Research Division, Beltsville, Maryland.

The NOMENCLATURE COMMITTEE OF THE TURFGRASS SECTION OF THE AMERICAN SOCIETY OF AGRONOMY; Felix V. Juska, Chairman; W. H. Daniel; E. C. Holt; and V. B. Youngner.

EFFECT OF RAINFALL ON CORN YIELD RESPONSE TO APPLIED POTASSIUM

The effect of variations in climatic factors on yield responses to applied fertilizer is a major problem in the summarization of results from fertilizer experiments conducted at different locations and in different years. The authors recently made a comprehensive statistical study of the effect of rainfall and temperature on corn yield response to phosphorus at Greenville, Kentucky. The same statistical procedures were used to study the effect of June plus July rainfall (M) on corn yield response to potassium from 1952 to 1960, inclusive, in another experiment at the same location, also on Tilsit silt loam. Corn was grown in a two-year rotation with wheat having a lespedea-sweet clover mixture seeded in the fall. To a series of plots enabled

The calculated regression of yield on both rainfall and applied K is as follows, along with the various standard errors:

\[\hat{Y} = -78.7 - 7.367K + 22.34M + 33.38K^{\frac{1}{2}} - 1.098M^2 + 0.127KM \]

This model accounted for 81.5% of the variation in corn yields over the 9 years, as indicated by an R^2 of 0.815 (14.7) (2.255) (3.274) (5.003) (0.1746)

\[\hat{Y} = -78.7 - 7.367K + 22.34M + 33.38K^{\frac{1}{2}} - 1.098M^2 + 0.127KM \]

When the point of maximum profitable return is calculated for each of the 3 levels of M (5, 7.5 and 10 inches of June plus July rainfall). The yield response to applied K to be essentially independent of rainfall, although the effects of applied K may have affected the response curve during the latter part of the season.

When the point of maximum profitable return is calculated for each of the 3 levels of M by equating the first partial derivative of the above equation (0.255) (2.255) (3.274) (5.003) (0.1746) (2.255) (3.274) (5.003) (0.1746)

\[\hat{Y} = -78.7 - 7.367K + 22.34M + 33.38K^{\frac{1}{2}} - 1.098M^2 + 0.127KM \]

The calculated regression of yield on both rainfall and applied K is as follows, along with the various standard errors:

\[\hat{Y} = -78.7 - 7.367K + 22.34M + 33.38K^{\frac{1}{2}} - 1.098M^2 + 0.127KM \]

This model accounted for 81.5% of the variation in corn yields over the 9 years, as indicated by an R^2 of 0.815 (14.7) (2.255) (3.274) (5.003) (0.1746)

\[\hat{Y} = -78.7 - 7.367K + 22.34M + 33.38K^{\frac{1}{2}} - 1.098M^2 + 0.127KM \]

When the point of maximum profitable return is calculated for each of the 3 levels of M (5, 7.5 and 10 inches of June plus July rainfall). The yield response to applied K to be essentially independent of rainfall, although the effects of applied K may have affected the response curve during the latter part of the season.

When the point of maximum profitable return is calculated for each of the 3 levels of M by equating the first partial derivative of the above equation (0.255) (2.255) (3.274) (5.003) (0.1746) (2.255) (3.274) (5.003) (0.1746)

\[\hat{Y} = -78.7 - 7.367K + 22.34M + 33.38K^{\frac{1}{2}} - 1.098M^2 + 0.127KM \]

This model accounted for 81.5% of the variation in corn yields over the 9 years, as indicated by an R^2 of 0.815 (14.7) (2.255) (3.274) (5.003) (0.1746)

\[\hat{Y} = -78.7 - 7.367K + 22.34M + 33.38K^{\frac{1}{2}} - 1.098M^2 + 0.127KM \]

When the point of maximum profitable return is calculated for each of the 3 levels of M (5, 7.5 and 10 inches of June plus July rainfall). The yield response to applied K to be essentially independent of rainfall, although the effects of applied K may have affected the response curve during the latter part of the season.

When the point of maximum profitable return is calculated for each of the 3 levels of M by equating the first partial derivative of the above equation (0.255) (2.255) (3.274) (5.003) (0.1746) (2.255) (3.274) (5.003) (0.1746)

\[\hat{Y} = -78.7 - 7.367K + 22.34M + 33.38K^{\frac{1}{2}} - 1.098M^2 + 0.127KM \]

This model accounted for 81.5% of the variation in corn yields over the 9 years, as indicated by an R^2 of 0.815 (14.7) (2.255) (3.274) (5.003) (0.1746)

\[\hat{Y} = -78.7 - 7.367K + 22.34M + 33.38K^{\frac{1}{2}} - 1.098M^2 + 0.127KM \]

When the point of maximum profitable return is calculated for each of the 3 levels of M (5, 7.5 and 10 inches of June plus July rainfall). The yield response to applied K to be essentially independent of rainfall, although the effects of applied K may have affected the response curve during the latter part of the season.

When the point of maximum profitable return is calculated for each of the 3 levels of M by equating the first partial derivative of the above equation (0.255) (2.255) (3.274) (5.003) (0.1746) (2.255) (3.274) (5.003) (0.1746)

\[\hat{Y} = -78.7 - 7.367K + 22.34M + 33.38K^{\frac{1}{2}} - 1.098M^2 + 0.127KM \]

This model accounted for 81.5% of the variation in corn yields over the 9 years, as indicated by an R^2 of 0.815 (14.7) (2.255) (3.274) (5.003) (0.1746)

\[\hat{Y} = -78.7 - 7.367K + 22.34M + 33.38K^{\frac{1}{2}} - 1.098M^2 + 0.127KM \]

When the point of maximum profitable return is calculated for each of the 3 levels of M (5, 7.5 and 10 inches of June plus July rainfall). The yield response to applied K to be essentially independent of rainfall, although the effects of applied K may have affected the response curve during the latter part of the season.

When the point of maximum profitable return is calculated for each of the 3 levels of M by equating the first partial derivative of the above equation (0.255) (2.255) (3.274) (5.003) (0.1746) (2.255) (3.274) (5.003) (0.1746)

\[\hat{Y} = -78.7 - 7.367K + 22.34M + 33.38K^{\frac{1}{2}} - 1.098M^2 + 0.127KM \]

This model accounted for 81.5% of the variation in corn yields over the 9 years, as indicated by an R^2 of 0.815 (14.7) (2.255) (3.274) (5.003) (0.1746)