About Us | Help Videos | Contact Us | Subscriptions
 

Abstract

 

This article in AJ

  1. Vol. 93 No. 6, p. 1281-1286
     
    Received: Jan 2, 2001


    * Corresponding author(s): mas44@psu.edu
 View
 Download
 Alerts
 Permissions
Request Permissions
 Share

doi:10.2134/agronj2001.1281

Estimating Forage Mass with a Commercial Capacitance Meter, Rising Plate Meter, and Pasture Ruler

  1. Matt A. Sanderson *a,
  2. C. Alan Rotza,
  3. Stanley W. Fultzb and
  4. Edward B. Rayburnc
  1. a USDA-ARS Pasture Syst. and Watershed Manage. Res. Unit, Building 3702, Curtin Rd., University Park, PA 16802-3702
    b Maryland Coop. Ext. Serv., Frederick, MD, 21702
    c West Virginia Univ., Morgantown, WV 26506-6108

Abstract

Accurate assessment of forage mass in pastures is key to budgeting forage in grazing systems. Our objective was to determine the accuracy of an electronic capacitance meter, a rising plate meter, and a pasture ruler in measuring forage mass and to determine the cost of measurement inaccuracy. Forage mass was estimated in grazed pastures on farms in Pennsylvania, Maryland, and West Virginia in 1998 and 1999. Forage mass estimated by each method was compared with forage mass estimated by hand-clipped samples. None of these indirect methods were accurate or precise, and error levels ranged from 26 to 33% of the mean forage mass measured on the pastures. The computer model DAFOSYM (Dairy Forage System Model) was used to simulate farm performance and the resulting effects of inaccuracies in estimating forage mass on pasture. A representative grazing dairy farm was developed, and the costs and returns from low-input and conventional managements were calculated. Different scenarios were then simulated, including under- or overestimating forage yield on pastures by 10 or 20%. All scenarios simulated resulted in lower returns compared with the optimum farm, with decreases in net return ranging from $8 to $198 ha−1 yr−1 Underestimating forage mass resulted in less hay and silage being harvested, more pasture being consumed, and more forage purchased compared with the optimum scenario. The opposite occurred for overestimation of forage mass. Our results indicate that achieving greater accuracy (to within 10% of actual pasture yield) in estimating pasture yields will improve forage budgeting and increase net returns.

  Please view the pdf by using the Full Text (PDF) link under 'View' to the left.

Copyright © 2001. American Society of AgronomyPublished in Agron. J.93:1281–1286.