About Us | Help Videos | Contact Us | Subscriptions
 

Agronomy Journal Abstract - MANURE

Mineralizable Carbon, Nitrogen, and Water-Extractable Phosphorus Release from Stockpiled and Composted Manure and Manure-Amended Soils

 

This article in AJ

  1. Vol. 95 No. 2, p. 405-413
     
    Received: June 14, 2002


    * Corresponding author(s): thdao@anri.barc.usda.gov
 View
 Download
 Alerts
 Permissions
Request Permissions
 Share

doi:10.2134/agronj2003.4050
  1. T. H. Dao *a and
  2. M. A. Cavigellib
  1. a USDA-ARS, AMBL, BARC-East, Beltsville, MD 20705-2350
    b USDA-ARS, SASL, 10300 Baltimore Ave., Beltsville, MD 20705-2350

Abstract

Dissolved N and P transfer to runoff water may increase with surface applications and shallow soil incorporation of animal manure. Information is needed regarding water-extractable nutrient release during manure decomposition to quantify that potential transfer to runoff in permanent pastures and conservation tillage systems. Release of net mineralizable C (MIN_C), net mineralizable N (MIN_N), and dissolved reactive P (DRP) was determined in stockpiled and composted cattle (Bos taurus) manure and manure-amended soils at 4, 20, and 35°C for 322 d at about 60% water-filled pore space. Flushes of CO2–C exceeding 100 mg kg−1 d−1, inorganic N, and DRP were released rapidly from both manures when incubated alone or as soil amendments. Dissolved P release varied inversely with sorption capacity and degree of P saturation in an Aridic Paleustalf and Torrertic Paleustoll. Net mineralizable C, MIN_N, and DRP flux densities were lognormally distributed during the 322-d incubation. Results from the lognormal modeling approach suggest that incubations needed to be performed only for as long as needed to attain the 50% maximal flux density beyond the maximum to predict MIN_C, MIN_N, and DRP release flux density distributions. Significant nonlinear relationships exist between ln(cumulative CO2–C) and inorganic N or DRP and have an inflexion point between 14 and 20 d. The nonlinearity of the C-to-N and C-to-DRP relationships indicates multiple substrate pools and supports the use of lognormal distributions to describe MIN_C, MIN_N, and DRP release from manures and manure-amended soils and to shorten laborious incubations.

  Please view the pdf by using the Full Text (PDF) link under 'View' to the left.

Copyright © 2003. American Society of AgronomyPublished in Agron. J.95:405–413.