Since the advent of nationwide advanced wastewater treatment in the late 1960s in the USA, much attention has been placed on treatment and disposal or utilization of the residual solids of wastewater processing. Those solids, referred to as sewage sludge, and more recently biosolids, have traditionally been placed in municipal landfills, incinerated, ocean dumped, or applied to agricultural land. Lesser amounts have been used for reclamation of disturbed lands, and given away or sold for gardening or commercial horticulture. Prior to the 1980s, most sludge was biologically digested as a means of stabilizing the sludge organics and to partially kill pathogens. In the 1980s, more advanced technologies for sludge treatment emerged that produced a pathogen-free product and stabilized sludge organic matter. The two most widely used approaches are biological composting and alkaline stabilization. While composting relies on biological degradation, heat and drying to kill pathogens and stabilize sludge organic matter, alkaline stabilization utilizes a combination of high pH, heat and drying to achieve the same purpose. This paper summarizes the N-Viro alkaline sludge stabilization process, the chemical and physical properties of the final product, N-Viro Soil, and identifies beneficial uses for the product.