In recent years, there has been increasing concern with modern, intensive farming methods, which rely heavily on pesticides and chemical fertilizers. While crop productivity has increased greatly in the last 30 yr, prevailing farming methods have been blamed for groundwater contamination with nitrates (NO_3) and pesticides (Hallberg, 1986), as well as surface water pollution (Myers, 1985). The safety of pesticides on the farm as well as pesticide residues on farm products are becoming a major issue as well (Pimentel et al., 1980; Tangley, 1986). The recent economic farm crisis has also raised interest in alternative methods, which can reduce input costs for the farmer, improving net returns (Lockeretz and Wernick, 1983).

In light of these issues, low-input agricultural systems are being investigated as alternatives to conventional systems. Farmers as well as consumers are asking that research efforts into these alternatives be increased (Tangley, 1986; Buttel et al., 1986; USDA, 1980).

Alternatives to conventional agricultural methods range over a wide spectrum. The USDA (1980) defines organic farming as . . .

. . . a production system which avoids or largely excludes the use of synthetically compounded fertilizers, pesticides, growth regulators, and livestock feed additives. To the maximum extent feasible, organic farming systems rely upon crop rotations, crop residues, animal manures, legumes, green manures, off-farm organic wastes, mechanical cultivation, mineral-bearing rocks, and aspects of biological pest control to maintain soil productivity and tilth, to supply plant nutrients, and to control insects, weeds, and other pests.