Most grasses used for turf and for improvement of pastures and rangelands in the USA were introduced from other continents. Breeders and others interested in providing improved plant materials must, therefore, rely on introduced germplasm to obtain the necessary genetic diversity. The impact of introductions on American grasslands is illustrated in part by the number of introduced grass cultivars released. Barker and Kalton (1989) summarized the cultivars registered by the Crop Science Society of America (CSSA) and noted that the vast majority of these are introduced. The earliest grass cultivar was registered in 1946 and since then 245 cultivars, 64 germplasms, and 17 parental lines of forage and turf grasses have been registered by CSSA. Approximately 20,500 accessions of important perennial forage and turf grasses are listed by the Germplasm Resources Information Network (GRIN). Cool-season and warm-season grasses make up 56 and 44% of the total, respectively (Table 1).

Early grass improvement research involved introduction and evaluation of individual species with essentially no effort made to improve strains within species. Introduction of germplasm in the USA began when the first colonists arrived in the New World. The gene pool was later expanded by plant explorers such as N. E. Hansen and F. N. Meyer. Germplasm from their collections is still an important component of the National Plant Germplasm System (NPGS) and is represented in the parentage of several modern cultivars. Seed of some species was introduced into North America by immigrants or indirectly through livestock feed, etc. Naturalized strains from these sources provided a germplasm base for many early cultivars. European breeders from commercial companies and public institutions also have been instrumental in providing germplasm and cultivars for American seed trade. For example, Hanson