The term *laterite* readily comes to mind when the subject of tropical soils is raised. Yet, there is great scope for soil variability in the tropics. The soils that have been referred to as a laterite are, in fact, but of minor extent there. Understanding this diversity and the distribution, characteristics, and processes of the soils of the tropics is obviously of pivotal importance to their wise agricultural development.

Historically, the nature and properties of soils have been an important determinant in cultural and economic development. Many ancient civilizations evolved in the fertile alluvial soils associated with the deltas at the margins of oceans and the floodplains of navigable rivers that were also the avenues for trade, commerce, and communication and thus brought about the emergence of great cities of the past and present. In other areas, such as tropical uplands, the low inherent soil fertility led to farming systems known as *shifting cultivation* or *slash-and-burn agriculture*.

As farmers elsewhere, the farmers of the tropics are keenly aware of soil diversity. This is evidenced by the fact that the “primitive” agriculture of every country is located on the soils with the least constraints. Thus, the more fertile Inceptisols, although they often occur on steep slopes, are preferred to the infertile Oxisols on adjacent plateaus. And the native Indians in the Andean countries preferred volcanic ash soils in the cool uplands to the soils in the hot, humid, and disease-prone Amazon basin.

Since the 1970s, however, population pressures and scarcity of good soils have forced agriculture to expand into hilly, or mountainous, or swamp areas. In parts of East Africa, wildlife is threatened by the encroachment of agriculture into wildlife habitats. In the humid tropics, systematic clearing of the