agricultural
anhydrous
ammonia
agricultural
anhydrous
ammonia
technology
and use

Proceedings of a symposium sponsored by the Agricultural Ammonia Institute, the American Society of Agronomy, and the Soil Science Society of America at Chase-Park Plaza Hotels, St. Louis, Mo., September 29 and 30, 1965.

Edited by

MALCOLM H. McVICKAR
National Manager, Agronomy, Chevron Chemical Corporation, San Francisco, Calif.

W. P. MARTIN
Head, Soil Science Department, University of Minnesota, St. Paul, Minn., and President, Soil Science Society of America

IVAN E. MILES
Chief agronomist, Olin Mathieson Chemical Corporation, Little Rock, Ark.

H. H. TUCKER
Director, Agricultural Services, Sohio Chemical Company, Lima, Ohio

Published by

Agricultural Ammonia Institute, Memphis, Tenn.
American Society of Agronomy, Madison, Wis.
Soil Science Society of America, Madison, Wis.
Copyright © 1966 by the
Agricultural Ammonia Institute, 22 S. 2nd St., Memphis, Tennessee
American Society of Agronomy, 677 S. Segoe Rd., Madison, Wisconsin
Soil Science Society of America, 677 S. Segoe Rd., Madison, Wisconsin

All rights reserved. No part of this book may be reproduced in any form
without written permission from the publishers.

Library of Congress Catalog Card Number: 66-25830
contributors

FRANCIS E. BROADBENT, Professor of Soil Microbiology, University of California, Davis, California.

JOHN A. BURNETT, JR., Supervisor, Technical Section for the Branch, Division of Chemical Operations, Office of Agricultural and Chemical Development, Tennessee Valley Authority, Wilson Dam, Alabama

S. A. COGSWELL, Senior Chemical Economist, Stanford Research Institute, Menlo Park, California

GRADY B. CROWE, Head, South Central Field Research Group, Economic Research Service, US Department of Agriculture, Stoneville, Mississippi

JOHN R. DOUGLAS, JR., Head, Distribution Economic Section, Division of Agricultural Development, Office of Agricultural and Chemical Development, Tennessee Valley Authority, Wilson Dam, Alabama

FRED C. ELLIOTT, Cotton Work Specialist, Texas Agricultural Extension Service, Texas A & M University, College Station, Texas

LLOYD R. FREDERICK, Professor of Soil Microbiology, Iowa State University, Ames, Iowa

FRANK GILLENTINE, Regional Manager, Agrico Chemical Company, Division of Continental Oil Company, Memphis, Tennessee

JOHN O. HARDESTY, Chemist, retired, Agricultural Research Service, US Department of Agriculture, Beltsville, Maryland

GEORGE R. HAWKES, Assistant National Manager, Agronomy, Ortho Division, Chevron Chemical Company, Fresno, California

JAMES T. HUEY, JR., Sales Supervisor, Market Development, Monsanto Company, El Dorado, Arkansas

F. HAVEN LEAVITT, Technologist, Product Application, Agricultural Research Division, Shell Development Company, Shell Oil Company, Modesto, California

M. M. MORTLAND, Professor of Soil Science, Michigan State University, East Lansing, Michigan

JAMES F. PARR, JR., Research Chemist (Microbiologist), Soils and Fertilizer Branch, Tennessee Valley Authority, Wilson Dam, Alabama

WILLIAM C. SCOTT, JR., Assistant to Chief of Process Engineering Branch, Division of Chemical Development, Office of Agricultural and Chemical Development, Tennessee Valley Authority, Wilson Dam, Alabama

JOE C. SHARP, Product and Marketing Manager of Mixing Liquids, Spencer Chemical Division of Gulf Oil Corporation, Kansas City, Missouri

A. V. SLACK, Chief, Applied Research Branch, Division of Chemical Development, Tennessee Valley Authority, Wilson Dam, Alabama

FLOYD W. SMITH, Director, Kansas Agricultural Experiment Station, Kansas State University, Manhattan, Kansas

JAMES L. SNYDER, JR., Chief of the Ammonia Branch, Division of Chemical Operation, Office of Agricultural and Chemical Development, Tennessee Valley Authority, Wilson Dam, Alabama

GEORGE STANFORD, Soil Scientist, US Soil Laboratory, Soil and Water Conservation Research Division, US Department of Agriculture, Beltsville, Maryland

FRANK J. STEVENSON, Professor of Soil Chemistry, University of Illinois, Urbana, Illinois

SAMUEL L. TISDALE, Vice President and Director of Agricultural Research, The Sulphur Institute, Washington, D.C.

BILLY B. TUCKER, Agronomy Extension Leader, Cooperative Extension Service, Oklahoma State University, Stillwater, Oklahoma

ROBERT E. WARNOCK, Regional Agronomist, Chevron Chemical Company, Fort Madison, Iowa
The use of commercial nitrogen as a fertilizer has increased markedly during the past two decades. Authorities predict that this trend will likely be accelerated in the years ahead. Today, essentially all fertilizer nitrogen is derived from synthetic anhydrous ammonia. In fact, in the USA, more nitrogen is applied as anhydrous ammonia than from any other one source.

Although anhydrous ammonia is directly used as such in agriculture in large tonnages and as a "building block" for other nitrogen carrying fertilizers, pertinent information on this product and its uses in agriculture has not been assembled in one volume. Recognizing the need for an up-to-date reference volume, the Agricultural Ammonia Institute, in cooperation with the American Society of Agronomy and the Soil Science Society of America, sponsored an Anhydrous Ammonia Symposium in St. Louis, Missouri, on September 29 and 30, 1965.

The Planning Committee, composed of members of the AAI's Agronomy Committee, was appointed to select topics to be discussed and to enlist the cooperation of outstanding authorities in preparing manuscripts and presenting the papers at the Symposium.

The Program and Editorial Committee consisted of W.P. Martin, representing the ASA and SSSA, and Ivan E. Miles, H. H. Tucker, and Malcolm H. McVickar, Chairman, representing the AAI. Zenas Beers, AAI Executive Vice President, and Matthias Stelly, ASA-SSSA Executive Secretary, were ex-officio members of the Committee.

The interest and cooperation on the part of all who were asked to participate, as evidenced by the distinguished list of contributors, was most gratifying. The editors gratefully acknowledge the splendid cooperation of the contributors in preparing their manuscripts so as to reduce editorial work to a minimum. They especially appreciate the promptness with which the authors returned their revised manuscripts incorporating the suggestions of the Editorial Committee.

Special acknowledgement is also due the AAI Staff, to Zenas Beers in particular, for their valuable assistance to the Committee in planning and conducting the Symposium. Special thanks are also given to the ASA and SSSA Staffs, especially to Mrs. Roberta Messer, for their assistance in editing and printing of this volume.

The Editorial Committee,
Malcolm H. McVickar, Chairman
W. P. Martin
Ivan E. Miles
H. H. Tucker
Among recent trends in agriculture and agricultural sciences and industries, two have special significance in relation to this Symposium and these published proceedings. These two trends are:

1) Science and research information are respected more and more by farmers as guides for their plans and decisions;

2) Industry representatives share more and more with university extension personnel the responsibility for making available this science and research information to farmers.

Therefore, if agriculture is to meet its challenges and responsibilities, universities and industry need to recognize their mutual contributions and responsibilities. The joint participation in this Symposium on Agricultural Anhydrous Ammonia Technology and Use and the joint publication of these proceedings by the Agricultural Ammonia Institute, the American Society of Agronomy, and the Soil Science Society of America are concrete evidence of such recognition.

It is altogether fitting that the AAI assumed the initiative in planning and presenting the Symposium with the cooperation of the two Societies and that these proceedings are a joint publication of all three groups. The Societies, through their headquarters staff and Mrs. Roberta Messer, have taken the leadership in preparing the manuscripts for publication and acting as agent with the printers.

We expect that this joint presentation of the best known information on anhydrous ammonia and its use in agriculture will increase the reader's understanding of the product, enabling him to utilize its full value in crop production. And we believe that the cooperation and understanding encouraged by this venture will lead to additional joint activities to the benefit of agriculture and of the agricultural sciences and industries.

Zenas H. Beers
Executive Vice President
Agricultural Ammonia Institute

Matthias Stelly
Executive Secretary
American Society of Agronomy and
Soil Science Society of America
forewords

The Agricultural Ammonia Institute is very pleased to have sponsored the Symposium recorded in this book. We are grateful to the American Society of Agronomy and the Soil Science Society of America for cooperating. By their support, these organizations have contributed greatly to the prestige of this Symposium.

The purpose of the Symposium was to present important scientific information about ammonia, covering the whole subject as fully as practical within the limits of time and available information. These published proceedings of the Symposium will be widely distributed and used.

Among the benefits to be derived from this Symposium are these:

Much of the current important information on the subject of ammonia is compiled and published and will be useful in teaching and as a reference.

Attention will be focused on the need for certain additional information as a result of reviewing what is presently known.

Ammonia, the product, and the agricultural ammonia industry itself will be better established with the scientific community.

As president of the AAI, it was my privilege and my pleasure to welcome participants and guests to the Symposium and now to commend to you this published text of the proceedings.

Nelson Abell, President
Agricultural Ammonia Institute

The advanced technology that has resulted in the phenomenal increase in efficiency of agricultural production in the USA during the past two decades is a direct result of the joint efforts of dedicated workers in research, education, and industry. These groups have many interests in common, emphasizing the importance of maintaining effective communication among them. Jointly sponsored symposia and conferences on topics of current mutual interest provide one of the most effective mechanisms for information exchange. It is fitting, therefore, that the Soil Science Society of America and the American Society of Agronomy should join the Agricultural Ammonia Institute to cosponsor a symposium on anhydrous ammonia and to publish the proceedings of this conference.

This Symposium was planned in early 1965 for the purpose of bringing together the available facts and principles relating to the effective use of anhydrous ammonia in agriculture. The participants are recognized authorities in their respective subject matter areas. We feel certain that their comprehensive treatments of the various aspects of anhydrous ammonia in agriculture will make this book a useful reference for the industrial and research worker as well as the teacher.

Robert W. Pearson, President
Soil Science Society of America
L. A. Richards, President
American Society of Agronomy
Contributors .. v
Prefaces ... viii
Forewords ... ix

CHAPTER 1. MANUFACTURING PROCESSES FOR AMMONIA
 by James L. Snyder, Jr., and John A. Burnett, Jr. 1
 I. History
 II. The Modern Ammonia Plant
 Gas Preparation • Shift Conversion • Carbon Dioxide
 Removal • Final Gas Purification • Ammonia Synthesis
 III. Low Pressure Storage of Ammonia
 IV. Future Trends

CHAPTER 2. PROPERTIES OF AMMONIA
 by Joe C. Sharp .. 21
 I. Effect on Man
 II. Chemical and Physical Characteristics
 III. Aqua Ammonia

CHAPTER 3. FERTILIZERS MANUFACTURED FROM AMMONIA
 by A. V. Slack and J. O. Hardesty 32
 I. Ammonium Nitrate
 II. Urea
 III. Nitrogen Solutions
 IV. Ammonium Sulfate
 V. Ammoniated Superphosphate Fertilizers
 VI. Ammonium Phosphates
 VII. Other Ammonium Phosphate Materials
 VIII. Ammonium Polyphosphate
 IX. Nitric Phosphate

CHAPTER 4. PAST, PRESENT, AND FUTURE PRODUCTION AND USE OF
 ANHYDROUS AMMONIA
 by John R. Douglas, Jr. and S. A. Cogswell 73
I. Historical Growth of Nitrogen Use in the USA
 Total Use of Nitrogen • Ammonia in Industry • End Products for Fertilizer Use • Ammonium Sulfate • Nitrogen Solutions • Urea • Multinutrient Materials • Other Uses

II. US Productive Capacity
 Anhydrous Ammonia • Ammonium Nitrate • Urea • Ammonium Sulfate • Solutions • Diammonium Phosphate • Nitric Phosphates and Other End Uses

III. The World Nitrogen Situation
 Consumption • Current and Announced Capacity • Future Requirements • Production Sources and Trade

IV. Types of Nitrogen Products
 Solids, Liquids, and Anhydrous Ammonia • Ammonium Nitrate and Urea • Diammonium Phosphate • Concentrated Superphosphate and Ammonium Nitrate

V. Summary

CHAPTER 5. APPLICATION OF AMMONIA
 by Floyd W. Smith 101
 I. Corn
 II. Cotton
 III. Grain Sorghum
 IV. Small Grains
 V. Rice
 VI. Pasture Grass
 VII. Summary and Conclusions

CHAPTER 6. AMMONIA APPLICATION IN IRRIGATION WATER
 by Robert E. Warnock 115
 I. Distribution
 II. Placement
 III. Volatilization
 During Irrigation • From Soil
 IV. Carbonate Precipitate
 V. Field Practice
 VI. Summary

CHAPTER 7. AGRICULTURAL AMMONIA EQUIPMENT DEVELOPMENT AND HISTORY
 by F. Haven Leavitt 125
 I. Industrial History
 II. Agricultural History
First Use of Anhydrous Ammonia • Research Begun • First Anhydrous Ammonia Meter • Distribution Irrigation Water • Soil Penetration and Time of Application Studies • Appointment of First Ammonia Distributors • First Commercial Application • Development of Meters for Commercial Application • Direct Injection of Ammonia in Soil • First Anhydrous Ammonia Applicator • Effect of Shank Injection Design • Laboratory Studies of Anhydrous Ammonia Injection • Development of Meters for Application Equipment • Development of Cylinders and Tanks for Anhydrous Ammonia Use • Development of Commercial Applicators • Anhydrous Ammonia-Sulfur • When to Apply Agricultural Ammonia

CHAPTER 8. HANDLING OF AMMONIA

by Frank Gillentine and James T. Huey, Jr. 143

I. Storage Tanks

High Pressure Tanks • Refrigerated Tanks

II. Transportation of Ammonia

III. Methods of Transferring Ammonia

Compressors • Liquid Pumps • Purging Vapor Pressure to Atmosphere

IV. Terminal Operations

Unloading Barges • Unloading Tank Cars • Transferring Ammonia from High Pressure to Refrigerated Storage • Refrigeration Systems • Transferring Ammonia from Atmospheric Pressure Tanks • Loading Tank Cars • Loading Transport Trucks

V. Bulk Plant Layout and Equipment

VI. Bulk Plant Operation

Unloading Tank Cars • Unloading Transports • Loading Nurse Tanks • Filling Applicator Tank from Nurse Tank

VII. Safety

Safety Equipment • Education and Training • First Aid

VIII. Preventive Maintenance

Painting • Tanks • Tank Fittings • Hose • Compressors

IX. Regulations

CHAPTER 9. ORGANIC MATTER INTERACTIONS

by F. E. Broadbent and F. J. Stevenson 169

I. Capacity of Organic Matter to Retain Ammonia
II. Reaction of Ammonia with Organic Matter
 Retention in Exchangeable Form • Chemical Fixation

III. Nitrite Reactions in Soil
 Reactions of Nitrite with Amino Compounds and Ammonia • Reactions of Nitrite with Lignins and Humic Substances

IV. Summary

CHAPTER 10. AMMONIA INTERACTIONS WITH SOIL MINERALS
 by M. M. Mortland ... 188
 I. Mechanisms of Ammonia Adsorption on Minerals
 II. Swelling of Clays with Ammonia
 III. Status and Availability of Ammonium Ion in Soil Minerals
 IV. Conclusions

CHAPTER 11. BIOLOGICAL INTERACTIONS
 by L. R. Frederick and F. E. Broadbent 198
 I. Immobilization by Soil Organisms
 Effect of Nitrogen Source • Competition Between Heterotrophs and Nitrifiers for Ammonium • Effect of Soil pH on Nitrogen Immobilization • Effect of Temperature • Effect of Organic Matter • Availability of Immobilized Nitrogen
 II. Nitrification
 Nitrification Rates in Soil • Effect of pH • Population of Nitrifiers • Effect of Rate of Application • Effect of Temperature • Effect of Source of Nitrogen • Nitrification in an Anhydrous Ammonia Application Zone
 III. Denitrification
 IV. Summary

CHAPTER 12. RETENTION OF AMMONIA IN SOILS
 by James F. Parr, Jr. and Robert I. Papendick 213
 I. Mechanisms of Ammonia Retention
 Chemical Mechanisms • Physical Mechanisms
 II. Factors Affecting Ammonia Retention in Soil
 Effect of Soil Moisture • Effect of Texture and Soil Physical Properties • Effect of Soil Reaction • Effect of Cation-Exchange Capacity
 III. Direct and Indirect Losses of Ammonia from Soils
 IV. Recent Development of Instrumentation for Dispensing Anhydrous Ammonia into Laboratory and Greenhouse Soil Cultures
V. Distribution of Anhydrous Ammonia in Soil After Application
VI. Ammonia Toxicity Effects on Plants

CHAPTER 13. NITROGEN REQUIREMENTS OF CROPS FOR MAXIMUM YIELD
by George Stanford .. 237
I. Evaluating Nitrogen Requirements of Crops
 Total Nitrogen Requirements of Crops • Sugarcane •
 Forage Grasses • Corn • Sorghum and Small Grains •
 Other Crops
II. Supplying the Nitrogen Needs of the Crop
 Recovery of Fertilizer Nitrogen by Crops • Uptake of
 Soil Nitrogen
III. Conclusions

CHAPTER 14. THE ROLE OF AMMONIA IN NITROGEN METABOLISM OF PLANTS
by John F. Thompson .. 258
I. Nitrate Reduction
 Conversion of Nitrite to Ammonia
II. Nitrogen Fixation
III. Urea Metabolism
IV. Ammonia Utilization
V. Other Aspects of Nitrogen Metabolism
VI. Summary

CHAPTER 15. AMMONIA-SULFUR SOLUTIONS FOR AGRICULTURE
by William C. Scott, Jr. and Samuel L. Tisdale 273
I. Small-Scale Tests
II. Applicator Tests
III. Metering Anhydrous Ammonia-Sulfur Solutions
IV. Pilot-Plant Tests
V. Corrosion Tests
VI. Corrosion Inhibition
VII. Agronomic Information
VIII. Conclusions

CHAPTER 16. THE PROFITABILITY OF ANHYDROUS AMMONIA USE AS A NITROGENOUS FERTILIZER
by Billy B. Tucker and Grady B. Crowe 284
I. Increased Nitrogen Usage
II. Agronomic Factors Influencing Economic Evaluations
CHAPTER 17. AGRICULTURAL USES OF AMMONIA OTHER THAN FERTILIZER

by George R. Hawkes and Fred C. Elliott 299

I. Harvest-Aid Chemicals
 General • Commonly Used Materials • Advantages and
 Disadvantages • Application • Anhydrous Ammonia as
 a Harvest-Aid Chemical

II. Anhydrous Ammonia as a Pipeline Sealant

III. Anhydrous Ammonia in Algae Control

IV. Use of Ammonia in Animal Feeds

V. Use of Anhydrous Ammonia for Pest Control
 Rat and Mice Control • Grain Fumigant • Mite and
 Insect Control • Mold Inhibitor • Soil Fumigant

VI. Summary

INDEX ... 311