Published 1987

FUTURE DEVELOPMENTS IN SOIL SCIENCE RESEARCH

FUTURE DEVELOPMENTS IN SOIL SCIENCE RESEARCH

A collection of SSSA Golden Anniversary contributions presented at the annual meeting in New Orleans, LA, 30 Nov.-5 Dec. 1986

Editorial Committee

L. L. Boersma, chair
D. E. Elrick, S-1
R. B. Corey, S-2
H. H. Cheng, S-3
T. C. Tucker, S-4
E. M. Rutledge, S-5
P. W. Unger, S-6
N. W. Foster, S-7
S. Kincheloe, S-8
P. H. Hsu, S-9

Soil Science Society of America, Inc. Madison, Wisconsin, USA

1987

CIP

ISBN 0-89118-786-3

Copyright © 1987 by the Soil Science Society of America, Inc.

ALL RIGHTS RESERVED UNDER THE U.S. COPYRIGHT LAW OF 1978 (P.L. 94-553)

Any and all use beyond the limitations of the "fair use" provision of the law require written permission from the publisher(s) and/ or the author(s); not applicable to contributions prepared by officers or employees of the U.S. Government as part of their official duties.

Printed in the United States of America

TABLE OF CONTENTS

Foreword Contributors	ix xi
FUTURE DEVELOPMENTS IN SOIL PHYSICS AN INTRODUCTION D. E. Elrick	1
The Past: Key to the Future J. Letey	3
Water Movement in Soils The Role of Analytical Solutions JY. Parlange, R. Haverkamp, R. H. Rand, L. Rendon, and G. H. Schmitz	11
Solute Transport P. J. Wierenga	23
Modeling in Soil Physics: A Critical Review Daniel Hillel	35
Spatial and Temporal Agroecosystem Variability G. Uehara and R. S. Yost	43
FUTURE DEVELOPMENTS IN SOIL CHEMISTRY AN INTRODUCTION Richard B. Corey	59
Kinetics of Soil Chemical Processes: Past Progress and Future Needs Donald L. Sparks	61
Soil Surface Chemistry: History and Preview M. M. Mortland	75
Disorder and Early Sorrow: Progress in the Chemical Speciation of Soil Surfaces Clifford T. Johnston and Garrison Sposito	89
Evaluation of Fundamental Data Needed to Predict the Geochemical Behavior of Elements Dhanpat Rai and Ishwar P. Murarka	101
Database Requirements for Expert Systems in Land Resources Management	202
Dale E. Baker and Andrew S. Rogowski	115
AN INTRODUCTION H. H. Cheng	125
Soil Microbiology: The Prologue and the Promise E. L. Schmidt	127
Soil Biochemistry: Past Accomplishments and Recent Developments F. J. Stevenson	133

Plant-Microbe Interactions in the Rhizosphere L. F. Elliott and J. K. Fredrickson	145
Ecological and Evolutionary Considerations on the Metabolism of Xenobiotic Chemicals in Soil Dennis D. Focht	157
FUTURE DEVELOPMENTS IN SOIL FERTILITY AND PLANT NUTRITION AN INTRODUCTION T. C. Tucker	169
Soil Fertility Concepts: Past, Present, and Future R. L. Westerman and T. C. Tucker	171
Interaction of Soil Fertility with other Inputs in Crop Production for Maximum Economic Return A. D. Halvorson and L. S. Murphy	181
Soil Salinity and Soil Acidity as Factors in Plant Nutrition	
J. F. Adams and T. A. Doerge	193
Nutrient Management and Tillage Systems The Midwest G. W. Rehm	205
Tillage Systems and Nutrient Management Great Plains J. F. Power and R. F. Follett	215
Tillage Systems and Nutrient Management In the East and Southeast J. T. Touchton and J. T. Sims	225
Nutrient Management and Ecology of Soilborne Plant Pathogens Neil W. Christensen	235
Plant Roots in Relation to Soil Fertility	245
FUTURE DEVELOPMENTS IN SOIL GENESIS, MORPHOLOGY, AND	245
E. M. Rutledge	259
The Future of the Soil Survey Richard W. Arnold	261
Future Developments in the Private Sector Related to Soil Genesis, Morphology, and Classification F. P. Miller and R. B. Brown	269
Soil Variability and Productivity: Future Developments R. B. Daniels and L. A. Nelson	279
Future Uses of Soil Genesis and Morphology in Allied Sciences	0.2.5
	293

Soil Genesis: Opportunities and New Directions for Research	
R. B. Bryant and C. G. Olson	301
FUTURE DEVELOPMENTS IN SOIL AND WATER CONSERVATION AND MANAGEMENT AN INTRODUCTION Paul W. Unger	313
	010
G. R. Foster and L. J. Lane	315
Efficient Use of Precipitation in Humid Regions Joe T. Ritchie	327
Water Management in Semi-Arid and Sub-Humid Regions B. A. Stewart	337
What will Conservation Tillage be like in Twenty Years? J. V. Mannering, D. R. Griffith, and S. D. Parsons	351
Genetic Engineering for Improving Plant Water Use Gerald G. Still	361
Energy Requirements for Root Penetration of Compacted Soil E. L. McCoy	367
FUTURE DEVELOPMENTS IN FOREST AND RANGE SOILS AN INTRODUCTION	270
N. W. FÖSLEF	379
Forest Soil Management and Productivity E. L. Stone	381
Predicting Growth Responses to Soil Management Practices: Avoiding "Future Shock" in Research	
Robert F. Powers	391
Forest Conversion Effects on Tropical Forest Productivity Myths, Realities, Uncertainties	
D. W. Cole and P. S. Homann	405
Assessing Nutrient Availability to Forest: Integrating Plant Needs with Soil Supplies	
Hugh G. Miller	413
Tree Roots and Microbes: A High Priority for Biotechnology John C. Gordon and William H. Smith	423
Responses of Forests and Forest Soils to Contaminants John G. McColl	433
FUTURE DEVELOPMENTS IN FERTILIZER TECHNOLOGY AND USE AN INTRODUCTION	
Sam Kincheloe	443

Future Developments in Plant Nutrition Research Dale G. Blevins	445
Potentials for Artificial Intelligence and Supercomputers in Soil Science Don Holt	459
Food Security and the Legislative Process Gary D. Myers	469
FUTURE DEVELOPMENTS IN SOIL MINERALOGY AN INTRODUCTION Pa Ho Hsu	477
Roots of Soil Mineralogy An Introduction M. L. Jackson	479
<pre>Impact of Mineralogical Research on Soil and Environmental Sciences P. M. Huang</pre>	485
Investigating Minerals in Soils with the Aid of Synthetic Specimens and Modern Instruments J. B. Dixon	499
Identification of 2:1 Clay Minerals in Soils and Sediments Pa Ho Hsu	509
Structural Chemistry of Soil Minerals: The Way Forward G. Brown	519
Mineralogical Aspects of Future Research in Soil Physical Chemistry Philip F. Low	529

Foreword

At their annual meetings in Washington, DC, Nov. 17-20, 1936, the Soils Section of the American Society of Agronomy and the American Soil Survey Association decided to merge and form the Soil Science Society of America. Upon the union of these two organizations, SSSA Proceedings began to be published. The Preface to Volume I notes that "it is hoped that this new publication will present each year a fairly complete picture of current American thought on all phases on soil science."

Fifty volumes of the Proceedings have now been published. During these 50 years many changes have taken place in soil science, all recorded in those volumes. Many of the problems that were important 50 years ago remain today. It is instructive to read the papers in Volume I of the Proceedings with the knowledge and understanding of today. S. F. Thornton wrote the paper "Root Solubility of the Essential Elements in the Soil as an Indication of Availability." Today, the study of the rhizosphere is of great interest. Admittedly, 50 years after this paper was published, we still know little about the details of the physical and chemical processes at the interface between root surface and soil particles. Several papers deal with mechanical and mineralogical analysis of soils. It is only recently that methods of particle size analysis are being improved with new instrumentation. L. A. Richards and O. R. Neal wrote "Some Field Observations with Tensiometers," and we must admit that we still have not developed the "ideal" device for the measurement of soil water potential or soil water content in the field. L. B. Baver wrote about "Soil characteristics influencing the movement and balance of soil moisture."

During the past 50 years, we have obtained a better understanding of the complexity of the physics, chemistry, and microbiology of soil systems. Now, during this time of rapid changes in science, standing at the threshold of the next 50 years in the life of our Society, we consider the important research needs for the future. Meeting speakers were asked to address future developments in soil science research at the Golden Anniversary meeting in December at New Orleans, LA. This publication is a record of these presentations.

It is clear that the future is forcing itself upon us with dramatic impact. The business of soil science is changing at a rapid rate. Experimental developments and equipment provide much of the impetus of renewed study of old problems. New insights are gained. The use of mathematical models, in particular, is forcing many changes.

Soil Science is now less discipline oriented that in the past. Fifty years ago, divisional groupings were clear and soil science was clearly the domain of soil scientists. Now divisional separations are more diffused, but at the same time, scientists from other disciplines enter the arena where soil scientists have functioned in the past. We must ask ourselves the following questions, "Will the study of solute transport through soils be implemented by engineers or by soil scientists?", "Will it be the plant physiologist with training in mathematics who models the behavior of roots in soils and studies the interactions between the soil, the plant, and the atmosphere, or will it be the soil scientist?", and "Will it be microbiologists who evaluate the application of genetically engineered organisms in soils, or will the scientists who lead these efforts come from our own ranks?" These questions are important for all of us to consider. The expectation is that the thoughts expressed in these papers may alert us to the future.

We thank the invited speakers for their efforts in focusing attention on future developments. Readers should carefully evaluate what they say in the limited time and space available to them. Much more could have been said. It is up to each individual member of the society to pick up the guantlet laid before them by these speakers and march with it.

> Larry Boersma, President, 1987 Soil Science Society of America

CONTRIBUTORS

J. F. Adams	Soil Chemist, Department of Agronomy and Soils, Auburn University, Auburn, Alabama
Richard W. Arnold	Director, USDA-SCS, Soil Survey Division, P.O. Box 2890, Washington, DC
Dale E. Baker	Professor of Soil Chemistry, The Pennsylvania State University, Department of Agronomy, University Park, Pennsylvania
Dale G. Blevins	Professor, University of Missouri- Columbia, Department of Agronomy, Columbia, Missouri
R. B. Brown	Associate Professor, Soil Science Department, University of Florida, Gainesville, Florida
G. Brown	Department of Soil and Plant Nutrition, Rothamsted Experiment Station, Harpenden, Heretfordsh, England
R. B. Bryant	Assistant Professor, Cornell University, Department of Agronomy, Ithaca, New York
H.H. Cheng	Professor and Interim Chair, Department of Agronomy and Soils, Washington State University, Pullman, Washington
Neil W. Christensen	Associate Professor of Soil Science, Department of Soil Science, Oregon State University, Corvallis, Oregon
D. W. Cole	Professor, College Forest Resources, University of Washington, Seattle, Washington
M. E. Collins	Associate Professor, Soil Science Department, University of Florida, Gainesville, Florida
Richard B. Corey	Professor, Soil Science Department, University of Wisconsin, Madison, Wisconsin
R. B. Daniels	Visiting Professor, University of North Carolina, Raleigh, North Carolina
J. B. Dixon	Professor of Soil Mineralogy, Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas

T. A. Doerge	Extension Soils Specialist, Department of Soil and Water Science, University of Arizona, Tucson, Arizona
L. F. Elliott	Microbiologist, USDA-ARS, Washington State University, Pullman, Washington
D.E. Elrick	Professor, Department of Land Research Science, University of Guelph, Guelph, Ontario, Canada
Dennis D. Focht	Professor of Soil Microbiology, Department of Soil and Environmental Science, University of California, Riverside, California
R. F. Follett	Research Leader, USDA-ARS, Fort Collins, Colorado
J. E. Foss	Professor/Head, Department of Plant and Soil Science, University of Tennessee, Knoxville, Tennessee
G. R. Foster	Hydraulic Engineer, USDA-ARS and Professor, Purdue University, West Latayette, Indiana
J. K. Fredrickson	Microbiologist, Battelle Northwest Labs, Richland, Washington
John C. Gordon	Dean and Professor, School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut
D. R. Griffith	Research Agronomist, Agronomy Department, Purdue University, West Lafayette, Indiana
D. L. Grunes	Soil Scientist, USDA-ARS, U.S. Plant, Soil and Nutrition Laboratory, Ithaca, New York
A. D. Halvorson	Soil Scientist, USDA-ARS, Akron, Colorado
R. Haverkamp	Senior Research Scientist, CNRS, Institut de Mecanique, St Nartin d' Heres Cedex, France
Daniel Hillel	Professor of Plant and Soil Sciences, University of Massachusetts, Amherst, Massachusetts

Don Holt	Director, Illinois Agricultural Experiment Station, University of Illinois, Urbana, Illinois
P. S. Homann	Professor of Forest Soils, Associate Dean, College of Forest Resources, University of Washington, Seattle, Washington
Pa Ho Hsu	Professor, Department of Soils and Crops, Rutgers University, New Brunswick, New Jersey
P. M. Huang	Professor of Soil Science, Department of Soil Science, University of Saskatchewan, Saskatoon, Canada
M. L. Jackson	The Franklin Hiram King Professor Emeritus, Department of Soil Science, University of Wisconsin, Madison, Wisconsin
Clifford T. Johnston	Assistant Professor, Soil Science Department, University of Florida, Gainesville, Florida
Sam Kincheloe	Director, Agronomy and Training Service, International Minerals and Chemical Corporation, Mundelein, Illinois
Betty Klepper	Supervisory Plant Physiologist, USDA-ARS, Columbia Plateau Conservation Research Center, Pendleton, Oregon
L. J. Lane	Hydro∣ogist, USDA-ARS, Arid Land, Watershed Management, Research Unit, Tucson, Arizona
J. Letey	Professor of Soil Physics, Department of Soil and Environmental Sciences, University of California, Riverside, California
Philip F. Low	Professor of Soil Chemistry, Agronomy Department, Purdue University, West Lafayette, Indiana
J. V. Mannering	Professor of Agronomy, Agronomy Department, Purdue University, West Lafayette, Indiana

John G. McColl	Professor, Forest Soils, Department of Plant and Soil Biology, University of California, Berkeley, California
E. L. McCoy	Assistant Professor, Department of Agronomy, The Ohio State University, Wooster, Ohio
F. P. Miller	Chairman and Professor, Department of Agronomy, The Ohio State University, Columbus, Ohio
Hugh G. Miller	Professor and Head of Department of Forestry, University of Aberdeen, Aberdeen, United Kingdom
M. M. Mortland	Professor, Department of Crop and Soil Science, Michigan State University, East Lansing, Michigan
Ishwar P. Murarka	Program Manager, Electric Power Research Institute, Palo Alto, California
L. S. Murphy	Great Plains Director, Potash & Phosphate Institute, Manhattan, Kansas
Gary D. Myers	President, The Fertilizer Institute, Washington, DC
L. A. Nelson	Professor, Institute of Statistics, North Carolina State University, Raleigh, North Carolina
C. G. 01son	Research Geologist, U.S. Geological Survey, Reston, Virginia
JY. Parlange	Professor, Agricultural Engineering,
S. D. Parsons	Professor, Agricultural Engineering Department, Purdue University, West Lafayette, Indiana
J. F. Power	Research Leader, USDA-ARS, University of Nebraska, Lincoln, Nebraska
Robert F. Powers	Principal Silviculturist, USDA Forest Service, Pacific Southwest Forest and Range Experiment Station, Redding, California

Dhanpat Rai	Staff Scientist, Geochemistry Section, Environmental Sciences Department, Battelle, Pacific Northwest Laboratories, Richland, Washington
R. H. Rand	Professor, Cornell University, Theoretical and Applied Mechanics, Ithaca, New York
G. W. Rehm	Extension SpecialistSoil Fertility, Soil Science Department, University of Minnesota, St. Paul, Minnesota
L. Rendon	Professor, Cornell University, Theoretical and Applied Mechanics, Ithaca, New York
R. W. Rickman	Soil Scientist, USDA-ARS, Columbia Plateau Conservation Research Center, Pendleton, Oregon
J. T. Ritchie	Professor, Homer Nowlin Chair, Crop and Soil Science Department, Michigan State University, East Lansing, Michigan
Andrew S. Rogowski	Soil Scientist, USDA-ARS, University Park, Pennsylvania
E.M. Rutledge	Professor, Agronomy Department, University of Arkansas, Fayetteville, Arkansas
E. L. Schmidt	Professor, Department of Soil Science, University of Minnesota, St. Paul, Minnesota
G. H. Schmitz	Research Associate, Technische Universitat, Munchen, West Germany
J. T. Sims	Assistant Professor, Department of Plant Science, University of Delaware, Newark, Delaware
William H. Smith	Clifton R. Musser Professor of Forest Biology, School of Forestry and Environmental Studies, New Haven, Connecticut
Donald L. Sparks	Associate Professor, Department of Plant Science, University of Delaware, Newark, Delaware

Garrison Sposito	Professor, Department of Soil and Environmental Science, University of California, Riverside, California
F. J. Stevenson	Professor of Soil Biochemistry, Department of Agronomy, University of Illinois, Urbana, Illinois
B. A. Stewart	Laboratory Director, USDA-ARS, Conservation and Production Research Laboratory, Bushland, Texas
Gerald G. Still	Director, USDA-ARS, PBA, Plant Gene Expression Center, Albany, California
E. L. Stone	Adjunct Professor, Department of Soil Science, University of Florida, Gainesville, Florida
J. T. Touchton	Associate Professor, Agronomy and Soil Department, Auburn University, Auburn, Alabama
T. C. Tucker	Professor, Soil and Water Science Department, Tucson, Arizona
G. Uehara	Professor of Soil Science, Department of Agronomy and Soil Science, University of Hawaii, Honolulu, Hawaii
Paul W. Unger	Soil Scientist, Conservation and Production Research Lab, Bushland, Texas
Robert L. Westerman	Professor of Soil Fertility and Plant Nutrition, Agronomy Department, Oklahoma State University, Stillwater, Oklahoma
P. J. Wierenga	Professor, Department of Agronomy and Horticulture, New Mexico State University, Las Cruces, New Mexico
R. S. Yost	Associate Professor, Department of Agronomy and Soil Science, University of Hawaii, Honolulu, Hawaii