Nitrogen in Crop Production
Nitrogen in Crop Production

Proceedings of a symposium held 25-27 May 1982 at Sheffield, Alabama. The symposium was sponsored by the National Fertilizer Development Center of the Tennessee Valley Authority, American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.

ROLAND D. HAUCK, editor-in-chief

Editorial Committee

J. D. Beaton
C. A. I. Goring
R. D. Hauck

R. G. Hoeft
G. W. Randall
D. A. Russel

Managing Editor: RICHARD C. DINAUER
Assistant Editor: SUSAN ERNST

Editor-in-Chief ASA Publications: DWAYNE R. BUXTON

Published by
American Society of Agronomy
Crop Science Society of America
Soil Science Society of America
Madison, Wisconsin USA
1984
CONTENTS

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
</tr>
<tr>
<td>FOREWORD</td>
</tr>
<tr>
<td>PREFACE</td>
</tr>
<tr>
<td>CONTRIBUTORS</td>
</tr>
<tr>
<td>CONVERSION FACTORS FOR SI UNITS</td>
</tr>
</tbody>
</table>

SECTION I. IMPORTANCE OF NITROGEN TO CROP PRODUCTION

1. **Nitrogen Use in World Crop Production**
 ADOLFO MARTINEZ AND R. B. DIAMOND
 I. Data Used .. 3
 II. Presentation of Data 4
 III. Summary 19
 References ... 21

2. **World Nitrogen Situation—Trends, Outlook, and Requirements**
 PAUL J. STANGEL
 I. Current Composition of the N Industry 23
 II. Consumption, Production, and Trade of N 33
 III. Future Outlook 46
 References ... 53

3. **Functions and Transformations of Nitrogen in Higher Plants**
 L. E. SCHRADER
 I. Assimilation of Nitrate-N into Amino Acids 55
 II. Transport of N 57
 III. Site of Protein Synthesis and Degradation 60
 IV. Distribution of Nitrogenous Assimilates in Various Plant Parts at Different Stages of Growth 62
 References ... 63

4. **Ammonium Versus Nitrate Nutrition of Higher Plants**
 R. H. HAGEMAN
 I. Aspects of Ammonium and Nitrate Nutrition 67
 II. Effects of Ammonium and Nitrate Ions on Plant Metabolites and Metabolism 70
 References ... 82
CONTENTS

5 Nutrient Balance and Nitrogen Use 87

STANLEY A. BARBER

I. Nutrient Balance in Solution Culture ... 88
II. Form of N in Solution ... 89
III. Form of N in Soil ... 91
IV. Soil Supply Mechanisms and Nutrient Interaction 92
V. Nutrient Balance for Plant Analysis ... 93
References ... 95

6 Nitrogen Toxicity in Plants 97

SHAM S. GOYAL AND RAY C. HUFFAKER

I. Toxicity of Different Forms of N ... 97
II. Toxicity of Excess N ... 111
III. Conclusions ... 112
References ... 112

SECTION II. SOURCES OF NITROGEN

7 Dinitrogen Fixation in Leguminous Crop Plants 121

DONALD A. PHILLIPS AND THEORDORE M. DE JONG

I. Agronomic Significance of Symbiotic N₂ Fixation in Legumes 121
II. Root Nodules: The Site of N₂ Reduction in Legumes 122
III. Integrating Root Nodules into the Intact Plant 124
IV. Effects of Soil N on Symbiotic N₂ Fixation 125
V. Measuring Symbiotic N₂ Fixation in Field-Grown Legumes 126
VI. Applying Basic Principles to Enhance Symbiotic N₂ Fixation in Legumes 128
References ... 130

8 Enhancing Biological Dinitrogen Fixation in Crop Plants 133

DAVID W. EMERICH AND HAROLD J. EVANS

I. Approaches ... 134
II. H₂ Metabolism ... 135
III. Poly-β-Hydroxybutyrate Metabolism 140
IV. Conclusions ... 141
References ... 141

9 Potential for Nonsymbiotic and Associative Dinitrogen Fixation 145

PETER VAN BERKUM

I. Some Estimates of N Contributed by Nonsymbiotic and Associative N₂ Fixation ... 146
II. Methodology for the Measurement of N₂ Fixation by Field Samples ... 147
III. Our Current Understanding of Nonsymbiotic and Associative N₂ Fixation ... 151
CONTENTS

IV. Improving N Input From Associative N₂ Fixation by Heterotrophic Bacteria for Agriculture 159
V. Conclusions .. 161
References ... 161

10 Uptake of Organic Nitrogen Forms by Roots and Leaves ... 165

JAMES E. HARPER

I. Urea Uptake by Roots .. 165
II. Urea Uptake by Foliage ... 167
III. Other Organic N Sources .. 168
IV. Importance of Organic N to Crop Production .. 169
References ... 170

11 Plant Use of Soil Nitrogen .. 171

F. E. BROADBENT

I. Methods of Measurement ... 171
II. Quantities of Soil N Utilized by Plants ... 172
III. Uptake Patterns of Soil N ... 175
IV. Depth of Utilization of Soil N ... 175
V. Immobilization and Remineralization of N ... 176
VI. Plant Uptake of Residual N .. 178
References ... 180

12 Conventional Nitrogen Fertilizers ... 183

DARRELL A. RUSSEL

I. Types of Materials and Production Technology .. 183
II. New Generation Uses for Conventional N Fertilizers .. 191
III. Summary .. 193
References ... 194

13 Slow-Release Nitrogen Fertilizers .. 195

SEWARD E. ALLEN

I. Potential Benefits From Slow-Release N Fertilizers .. 195
II. Slow-Release N Fertilizers and Their Mode of Action ... 197
III. Slow-Release N Fertilizers in Crop Production .. 200
IV. Environmental Considerations ... 204
V. Conclusions .. 205
References ... 205

14 Use of Nitrogen from Agricultural, Industrial, and Municipal Wastes ... 207

LEE E. SOMMERS AND PAUL M. GIORDANO

I. Composition of Waste Materials ... 208
II. Fate of Waste-Derived N in Soils ... 210
III. Utilization of Waste-Derived N by Crops ... 214
IV. Future Prospects .. 217
References ... 218
15 Use of Nitrogen from Manure

D. R. BOULDIN, S. D. KLAUSNER, AND W. S. REID

I. Total N in Animal Manure in the United States 222
II. N Balance for Farm Units 224
III. Crop Response 231
IV. Summary of Present Situation 238
V. Some Future Considerations 238
References 243

SECTION III. MANAGEMENT OF CROPS FOR NITROGEN UTILIZATION

16 Diagnosis of Nitrogen Deficiency in Plants

T. C. TUCKER

I. Visual Deficiency Symptoms 250
II. Evaluation of Plant N Status 251
III. Practical Application 255
IV. Summary 261
References 261

17 Nitrogen and Yield Potential

GEORGE STANFORD AND J. O. LEGG

I. Components of High Yields 264
II. Record Yields Reported for Major Crops 265
III. N Requirement of Crops in Relation to Potential Yield 266
IV. Effective Use of N Fertilizers to Produce Maximum Yields 269
V. Summary and Conclusions 271
References 272

18 Efficient Use of Nitrogen in Cropping Systems

B. R. BOCK

I. Agronomic Perspective 273
II. Economic Perspective 280
III. Implications of Agronomic and Economic N Use Efficiency for Environmental Impact 289
IV. Summary and Conclusions 291
References 293

19 Crop Rotations for Efficient Nitrogen Use

I. Importance of N in Crop Rotations 295
II. The Changing Role of Rotations 297
References 305
CONTENTS

20 Nitrogen or Water Stress: Their Interrelationships.. 307

F. M. RHOADS

I. N Fertilization and Crop Yield ... 308
II. Water Stress and Crop Yield ... 309
III. Water Stress and Root Nodules on Soybeans.. 312
IV. Effect of N on Water Use Efficiency... 313
V. Effect of Water on Crop Response to N ... 315
References .. 316

21 Nitrogen Use and Nitrate Leaching in Irrigated Agriculture.............................. 319

P. F. PRATT

I. Area and Distribution of Irrigated Land .. 320
II. Leaching of Nitrate ... 321
III. Basin Studies .. 327
IV. Management Alternatives ... 330
References .. 332

22 Nitrogen Use in Dryland Farming Under Semiarid Conditions............................ 335

R. A. OLSON

I. Dryland Farming Defined .. 335
II. N Response in Relation to Available Soil Moisture 337
III. N Need Determinants ... 340
IV. Maximizing Efficiency in Fertilizer Use .. 342
V. N Use and Crop Quality .. 344
References .. 346

23 Nitrogen Use in Flooded Rice Soils.. 349

B. R. WELLS AND F. T. TURNER

I. Characteristics of Major N Transformation Processes in the Water-Soil-Rice System .. 350
II. Practical Aspects of Applying Fertilizer N to Rice 352
III. Regional Differences in N Fertilizer Management in the United States 358
IV. Future Research Needs .. 361
References .. 362

24 Plant Breeding for Efficient Plant Use of Nitrogen.. 363

J. H. SHERRARD, R. J. LAMBERT, M. J. MESSMER, F. E. BELOW, AND R. H. HAGEMAN

I. Standard Corn-Breeding Procedures ... 365
II. Interactions Between N, Nitrate Reductase, and Yield 366
III. Selection Using Physiological Traits Related to N Metabolism 370
IV. Proposed Plant Ideotype for High Grain Yield and Quality 376
References .. 377
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>Legume Seed Inoculation</td>
<td>379</td>
</tr>
<tr>
<td></td>
<td>MICHAEL A. COLE</td>
<td></td>
</tr>
<tr>
<td>I.</td>
<td>Need for and Efficacy of Inoculation</td>
<td>379</td>
</tr>
<tr>
<td>II.</td>
<td>Forms of Inoculant and Current Practices</td>
<td>381</td>
</tr>
<tr>
<td>III.</td>
<td>Inoculum Quality</td>
<td>382</td>
</tr>
<tr>
<td>IV.</td>
<td>Rhizobium Strain Selection</td>
<td>383</td>
</tr>
<tr>
<td>V.</td>
<td>Soil Factors Affecting Efficient Use of Inoculum</td>
<td>385</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>386</td>
</tr>
</tbody>
</table>

SECTION IV. MANAGEMENT OF SOILS AND PESTS FOR NITROGEN UTILIZATION

26	Evaluating Plant-Available Nitrogen in Soil-Crop Systems	391
	J. J. MEISINGER	
I.	General Principles	391
II.	Current Methods of Evaluating Plant-Available N	397
III.	Future Trends and Improved Methods of Evaluating Plant- Available N	410
	References	413

27	Liming Effects on Nitrogen Use and Efficiency	417
	FRED ADAMS AND JOHN B. MARTIN	
I.	Mineralization of Organic N	418
II.	Nitrification	418
III.	Denitrification	419
IV.	N\textsubscript{2} Fixation.	420
V.	Effects of Soil Acidity on Ammonia Volatilization	421
VI.	Influence of Soil Acidity on Mineral N Uptake	422
VII.	N Fertilizers and Soil Acidity	422
	References	424

28	Nitrogen Use and Weed Control	427
	ELLERY L. KNAKE AND MARSHAL D. McGLAMERY	
I.	Weed Management	427
II.	Herbicide-N-Soil-Plant Relationships	430
III.	Fertilizer-Herbicide Mixtures	433
IV.	Environmental and Regulatory Considerations	437
	References	439

29	Nitrogen Nutrition of Plants and Insect Invasion	441
	J. MARK SCRIBER	
I.	Plant N and Insect Growth	443
II.	Practical Approaches	452
CONTENTS

III. Conclusions .. 454
References .. 455

30 Interaction of Nitrogen Use and Plant Disease Control 461

THOR KOMMEDAHL

I. Effect of N on Disease Susceptibility 461
II. Controlling Plant Diseases with N Fertilizers 463
III. Summary .. 470
References .. 470

SECTION V. MANAGEMENT OF FERTILIZER NITROGEN FOR CROP PRODUCTION

31 Mechanics of Applying Nitrogen Fertilizer 475

FRANK P. ACHORN AND MICHAEL F. BRODER

I. Recent Developments in Application Equipment 475
References .. 491

32 Applying Nitrogen in Irrigation Waters 493

BRYANT R. GARDNER AND ROBERT L. ROTH

I. Flood Irrigation ... 493
II. Sprinkler Irrigation 498
III. Other Pressurized Irrigation Systems 503
IV. Summary .. 505
References .. 505

33 Significance of Nitrogen Fertilizer Microsite Reactions in Soil 507

ROLAND D. HAUCK

I. Concepts .. 508
II. Physical, Chemical, and Biological Characteristics of N Fertilizers ... 509
III. Applications of Theory to Practice 516
IV. Conclusion .. 518
References .. 519

34 Efficiency of Fertilizer Nitrogen Use as Related to Application Methods 521

GYLES W. RANDALL

I. Application of N to the Soil 522
II. Application of N to the Foliage 529
III. Application with Irrigation Water 530
IV. Future Research Areas 531
References .. 532
35 Nitrogen Management in the No-Till System

K. L. WELLS

I. Effect of No-Till Production on Soil Properties 535
II. Movement of N in No-Till 537
III. Efficiency of Fertilizer N 539
IV. Fertilizer N Sources .. 543
V. Use of Winter Annual Crops to Improve Seasonal Mineralization of Organic N .. 544
VI. Effect of No-Tillage on Soil N Content 545
VII. Management Practices for Use of Fertilizer N in Production of No-Till Corn .. 547
VIII. Summary .. 549
References ... 549

36 Technological Approaches to Improving the Efficiency of Nitrogen Fertilizer Use by Crop Plants

ROLAND D. HAUCK

I. Control of Nitrification 552
II. Control of Ammonia Volatilization 554
III. Choosing Appropriate Technologies 558
IV. Prognosis .. 559
References ... 560

37 Current Status of Nitrification Inhibitor Use in U.S. Agriculture

R. G. HOEFT

I. Do Nitrification Inhibitors Reduce the Rate of Nitrification? . 563
II. How Long will Nitrification Inhibitors be Effective? 563
III. What N Fertilizers Can be Used with the Inhibitors? 564
IV. Will Nitrification Inhibitors Maintain N in the NH₄⁺ Form too Long? .. 565
V. Will the Use of an Inhibitor Produce Economical Increases in Grain Yields? 565
VI. Summary .. 568
References ... 569

38 Potential for Use of Urease Inhibitors

REGIS D. VOSS

I. Urea Use in the United States 571
II. Urea Hydrolysis .. 573
III. Sources of Urease ... 574
IV. Factors Affecting Urease Activity 574
V. Urease Inhibitors ... 575
VI. Desirable Characteristics of Inhibitor 575
VII. Agronomic Considerations 576
VIII. Agronomic Evaluation 576
IX. Potential .. 576
References ... 577
CONTENTS

39 Foliar Fertilization 579

ROBERT C. GRAY AND GARY W. AKIN

I. Nutrient Uptake by Leaves .. 579
II. Forest Fertilization .. 580
III. Changing Chemical Composition 581
IV. Relieving Physiological Stress 581
V. Other Uses .. 583
VI. Conclusions ... 583
References ... 584

40 Nitrogen Use in Organic Farming 585

J. F. POWER AND J. W. DORAN

I. Historical Considerations .. 585
II. Sources of N in Organic Farming 587
III. Conservation and Availability of N 591
IV. Organic Farming and Soil Productivity 594
V. Conclusions and Future Research Needs 596
References ... 597

SECTION VI. NITROGEN MANAGEMENT AND QUALITY OF CROP AND ENVIRONMENT

41 Effect of Nitrogen Nutrition on Quality of Agronomic Crops 601

E. L. DECKARD, C. Y. TSAI, AND T. C. TUCKER

I. Cereals .. 601
II. Cotton .. 609
III. Sugarbeets .. 611
References ... 613

42 Fruit and Vegetable Quality as Affected by Nitrogen Nutrition 617

S. J. LOCASCIO, W. J. WILTBANK, D. D. GULL, AND D. N. MAYNARD

I. Fruit ... 619
II. Vegetables ... 621
III. Summary .. 625
References ... 625

43 Effect of Nitrogen Nutrition on Quality of Three Important Root/Tuber Crops 627

WALTER A. HILL

I. Potato ... 628
II. Sugarbeet .. 632
III. Sweet Potato .. 635
References ... 639
44 Effect of Nitrogen Excess on Quality of Food and Fiber 643

DARRELL W. NELSON

I. N Metabolism in Plants ... 643
II. Hazards of Nitrate, Nitrite, Prussic Acid, and Nitrosamines in Food 644
III. Nitrate Levels in Crops ... 646
IV. Techniques to Minimize Nitrate Levels in Plants .. 654
V. Use of Nitrate-Rich Plants in Livestock Rations .. 655
VI. Nitrate, Prussian Acid, and Nitrosamines in Plant Tissues 655
VII. Assessment of Health Implications of Nitrate, Nitrite, and Nitrosamines in Food and Feed ... 656
References .. 659

45 Nitrogen Management to Minimize Adverse Effects on the Environment 663

SAMUEL R. ALDRICH

I. Maximize Positive Supporting Practices .. 664
II. Minimize Negative Factors .. 666
III. Select Optimum N Fertilizer Practices .. 667
IV. The Fate of Unused N ... 672
V. Cover Crops ... 672
VI. Summary ... 673
References .. 673

SECTION VII. INFLUENCE OF CLIMATE AND SOIL ON NITROGEN MANAGEMENT

46 Management of Nitrogen in New England and Middle Atlantic States 677

V. ALLAN BANDEL AND RICHARD H. FOX

I. Soils ... 678
II. Amounts and Sources of N Fertilizer Used .. 680
III. Manner of N Use ... 684
IV. No-Tillage Corn Production .. 685
References .. 688

47 Management of Nitrogen in the South Atlantic States 691

J. W. GILLIAM AND FRED BOSWELL

I. Soils ... 692
II. Climate ... 693
III. Commercial Fertilizer N Used .. 693
IV. Fertilization of Major Crops .. 694
V. Problems and Opportunities in N Fertilization ... 701
References .. 704
CONTENTS

48 Nitrogen Management for the East North Central States 707
L. F. WELCH

I. Climate ... 708
II. Crops and Land Use .. 708
III. Fertilizer N Use Data 709
IV. Sources of N .. 711
V. N Management ... 714
References .. 718

49 Management of Nitrogen in the West North Central States 721
G. A. PETERSON AND REGIS D. VOSS

I. Fertilization of Major Crops 722
II. General Discussion and Research Needs 731
References ... 732

50 Nitrogen Use in the South Central States 735
BILLY B. TUCKER AND L. W. MURDOCK

I. Description of the Region 736
II. N Fertilization Practices of Important Crops 738
III. Major Problems and Concerns for N Fertilizer Use 748

51 Management of Nitrogen in the Mountain States 751
D. G. WESTFALL

I. N Sources .. 752
II. N Fertilizer Recommendations 754
III. N Management on Various Crops 757
IV. Research Needs .. 762
References ... 762

52 Management of Nitrogen in the Pacific States 765
ROY S. RAUSCHKOLB, T. L. JACKSON, AND A. I. DOW

I. The Region .. 765
II. Management Variables 768
III. Management Tools ... 774
IV. N Fertilizer and Energy Use 775
V. Research Needs ... 777
References ... 777

Perspective ... A. G. NORMAN 779
Epilogue ... R. D. HAUCK 781
Glossary of Fertilizer Nomenclature and Abbreviations 787
Subject Index .. 789
DEDICATION

A native of Wisconsin, Kilmer obtained his B.S. and M.S. degrees in soil science at the University of Wisconsin-Madison. During World War II he spent four years in the armed forces, mostly in the Pacific. His entire professional career was devoted to service in U.S. Governmental agencies, starting in the Soil Conservation Service as a soil scientist at the Upper Mississippi Valley Experiment Station at LaCrosse, Wisconsin in 1941. After the war he worked as a soil surveyor, also in Wisconsin. In 1947, he transferred to the National Soil Survey Laboratory at Beltsville, Maryland, at that time a part of the Bureau of Plant Industry, Soils, and Agricultural Engineering.

In 1955, Kilmer shifted his professional interests from soil and water management by joining the Soil and Water Research Division of the Agricultural Research Service. In 1961, he joined the Office of Agricultural and Chemical Development of the Tennessee Valley Authority at Muscle Shoals, Alabama, serving first as assistant to the manager and then, until his retirement in 1979, as Chief of the national important Soils and Fertilizer Research Branch.

Kilmer’s greatest accomplishment was probably in fostering meaningful and needed research in soils and fertilizers in his own organization and also in institutions cooperating with TVA. His own research of greatest impact dealt with losses of plant nutrients from soils through erosion, runoff, and leaching. Kilmer was a key individual in the 20-year joint effort of the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America and TVA’s National Fertilizer Development Center in conducting symposia dealing with plant nutrition, fertilizers, and crop production. This joint effort resulted in an important series of highly authoritative and widely used books, of which *Nitrogen in Crop Production* is the latest.

Kilmer was honored as Fellow, both of the American Society of Agronomy and the Soil Science Society of America. He served as President of the Soil Science Society of America during 1976–1977. Kilmer was highly regarded, both as a professional soil scientist and as a person.

Victor James Kilmer
1913–1981

March 1984

Louis B. Nelson (retired)
Director, Division of Agricultural Development
National Fertilizer Development Center
Tennessee Valley Authority
Muscle Shoals, Alabama
FOREWARD

The realization of this book stems from a national symposium, Nitrogen in Crop Production, held in Sheffield, Alabama, 25–27 May 1982, jointly sponsored by the Tennessee Valley Authority National Fertilizer Development Center, the American Society of Agronomy, the Crop Science Society of America, and the Soil Science Society of America. The symposium was organized to provide a comprehensive summary of current knowledge about nitrogen as it relates to crop production. Each of the presentations had a practical orientation that focused on alternative means to improve plant use of nitrogen in different cropping systems. Those presentations as well as several additional closely related topics comprise the chapters of this volume. Our understanding of the role of nitrogen and the continual improvement of management alternatives for its optimal use in crop production as documented here represents an integrated effort of nearly 100 scientists and technologists. Because of their unique effort, we expect that this book will be of interest to farm managers, agronomists, crop and soil scientists, crop ecologists, and cooperative extension specialists.

We want to express our appreciation to the editorial committee, headed by Dr. R. D. Hauck; the authors and reviewers; and the ASA Headquarters staff for the time and effort they have spent in making this publication possible.

November 1984

K. J. FREY, president
American Society of Agronomy

W. F. KEIM, president
Crop Science Society of America

D. R. NIELSEN, president
Soil Science Society of America
PREFACE

Nitrogen in Crop Production provides an authoritative review of the principles and practices of nitrogen use in agricultural cropping systems. It was planned as a companion work to *Nitrogen in Agricultural Soils* (Agronomy no. 22, 1982), with focus on the interrelationships of nitrogen and other crop production factors. Topics discussed include (i) how plants use nitrogen, (ii) sources and supply of plant-available nitrogen, and (iii) the management of crops, fertilizers and fertilizer amendments, manures and other waste products, plant residues, and soils for maximum, economic crop production. Other topics discussed are the relationship between nitrogen use and plant diseases, insect invasion, water stress, and weed infestation. Separate chapters are devoted to crop quality and the quality of the environment, as affected by nitrogen use. The last section of the book describes recommended nitrogen management practices for regions of the United States differing in climate, soils, and cropping systems.

Authors of chapters were asked to prepare overviews rather than comprehensive reviews of their assigned topics and to cite mainly key articles and reviews. Where data on a particular topic were lacking and definite conclusions could not justifiably be drawn, a statement of informed opinion was solicited. The restrictions placed on the authors were necessary because of the many topics that the editorial committee thought desirable to discuss. Even so, relevant topics that might have been included were omitted. We apologize for these omissions and for the omission of references to important work that might have been included, had volume size not been a practical consideration.

The editorial committee expresses appreciation to the authors and the organizations they represent. We acknowledge Richard C. Dinauer, Susan Ernst, David M. Kral, Rodney A. Briggs, Matthias Stelly, and other members of the headquarters staff for assistance in editing and preparing the manuscripts for publication. We pay special tribute to Victor J. Kilmer, whose administrative support during the planning of this book was most helpful; to George Stanford, coauthor of Chapter 17, and to A. G. Norman, author of the Perspective, whose untimely deaths occurred while the book was in progress.

March 1984

The Editorial Committee

R. D. HAUCK, editor-in-chief
Tennessee Valley Authority, Muscle Shoals, Alabama

J. D. BEATON
Potash and Phosphate Institute, Cochrane, Alberta

C. A. I. GORING
The Dow Chemical Company, Midland, Michigan

R. G. HOEFT
University of Illinois, Urbana, Illinois

GYLES W. RANDALL
University of Minnesota, Waseca, Minnesota

D. A. RUSSEL (retired)
Tennessee Valley Authority
CONTRIBUTORS

Frank P. Achorn
Senior Scientist, National Fertilizer Development Center, Tennessee Valley Authority, Muscle Shoals, Alabama

Fred Adams
Professor of Soil Chemistry, Department of Agronomy and Soils, Auburn University, Auburn, Alabama

Gary W. Akin
Agronomist, National Fertilizer Development Center, Tennessee Valley Authority, Muscle Shoals, Alabama

Samuel R. Aldrich
Professor of Soil Fertility in Extension, Emeritus, University of Illinois, Urbana, Illinois

Seward E. Allen
Agronomist, National Fertilizer Development Center, Tennessee Valley Authority, Muscle Shoals, Alabama

V. Allan Bandel
Professor of Soils, Agronomy Department, University of Maryland, College Park, Maryland

Stanley A. Barber
Professor of Agronomy, Department of Agronomy, Purdue University, West Lafayette, Indiana

Frederick E. Below
Research Assistant/Research Associate, Department of Agronomy, University of Illinois, Urbana, Illinois

B. R. Bock
Research Soil Chemist, National Fertilizer Development Center, Tennessee Valley Authority, Muscle Shoals, Alabama

L. V. Boone
Agronomist, Department of Agronomy, University of Illinois, Urbana, Illinois

Fred C. Boswell
Professor and Soil Scientist, Agronomy Department, University of Georgia, Experiment, Georgia

D. R. Bouldin
Professor of Soil Science, Department of Agronomy, Cornell University, Ithaca, New York

F. E. Broadbent
Professor of Soil Microbiology, Department of Land, Air, and Water Resources, University of California, Davis, California

Michael F. Broder
Agricultural Engineer, National Fertilizer Development Center, Tennessee Valley Authority, Muscle Shoals, Alabama

Michael A. Cole
Associate Professor of Agronomy, Department of Agronomy, University of Illinois, Urbana, Illinois

E. L. Deckard
Professor of Agronomy, Agronomy Department, North Dakota State University, Fargo, North Dakota

Theodore M. DeJong
Assistant Professor, Pomology Department, University of California, Davis, California

R. B. Diamond
Coordinator, Fertilizer Evaluations, International Fertilizer Development Center, Muscle Shoals, Alabama

J. W. Doran
Soil Scientist, Agricultural Research Service, U.S. Department of Agriculture, University of Nebraska, Lincoln, Nebraska

A. I. Dow
Extension Soil Scientist (retired), Washington State University, Prosser, Washington. Currently Soil Management Consultant

David W. Emerich
Professor, Department of Biochemistry, University of Missouri, Columbia, Missouri
CONTRIBUTORS

Harold J. Evans Professor, Laboratory for Nitrogen Fixation Research, Oregon State University, Corvallis, Oregon

Richard H. Fox Associate Professor of Soil Science, Department of Agronomy, The Pennsylvania State University, University Park, Pennsylvania

Bryant R. Gardner Soil Scientist, Yuma Valley Agricultural Center, University of Arizona, Yuma, Arizona

J. W. Gilliam Professor, Soil Science Department, North Carolina State University, Raleigh, North Carolina

Paul M. Giordano Research Soil Chemist, National Fertilizer Development Center, Tennessee Valley Authority, Muscle Shoals, Alabama

Sham S. Goyal Postgraduate Researcher, Plant Growth Laboratory, University of California, Davis, California

Robert C. Gray Agronomist (retired), National Fertilizer Development Center, Tennessee Valley Authority, Muscle Shoals, Alabama

D. D. Gull Associate Professor, Vegetable Crops Department, University of Florida, Gainesville, Florida

R. H. Hageman Professor, Department of Agronomy, University of Illinois, Urbana, Illinois

Roland D. Hauck Research Soil Scientist, National Fertilizer Development Center, Tennessee Valley Authority, Muscle Shoals, Alabama

Walter A. Hill Professor, Department of Agricultural Sciences, Tuskegee Institute, Tuskegee Institute, Alabama

R. G. Hoeft Professor of Soil Fertility, Department of Agronomy, University of Illinois, Urbana, Illinois

Ray C. Huffaker Professor of Agronomy, Plant Growth Laboratory, University of California, Davis, California

T. L. Jackson Professor of Soil Science, Department of Soil Science, Oregon State University, Corvallis, Oregon

S. D. Klausner Soil Scientist, Department of Agronomy, Cornell University, Ithaca, New York

Ellery L. Knake Professor of Weed Science in Agronomy, Department of Agronomy, University of Illinois, Urbana, Illinois

Thor Kommedahl Professor, Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota

L. T. Kurtz Professor of Soil Fertility, Agronomy Department, University of Illinois, Urbana, Illinois

R. J. Lambert Professor of Plant Genetics, Department of Agronomy, University of Illinois, Urbana, Illinois

J. O. Legg Soil Scientist (retired), Agricultural Research Service, U.S. Department of Agriculture. Currently Adjunct Professor, Agronomy Department, University of Arkansas, Fayetteville, Arkansas

S. J. Locascio Horticulturist, Vegetable Crops Department, University of Florida, Gainesville, Florida
Agronomist, National Fertilizer Development Center, Tennessee Valley Authority, Muscle Shoals, Alabama

Agricultural Economist, International Fertilizer Development Center, Muscle Shoals, Alabama

Professor and Chairman, Vegetable Crops Department, University of Florida, Gainesville, Florida

Professor of Weed Science, Agronomy Department, University of Illinois, Urbana, Illinois

Soil Scientist, Agricultural Research Service, U.S. Department of Agriculture, Beltsville Agricultural Research Center, Beltsville, Maryland

Plant Breeder, Garst Seed Company, Ames, Iowa. Formerly Graduate Student, University of Illinois, Urbana, Illinois

Extension Professor, University of Kentucky, Princeton, Kentucky

Professor of Agronomy, Department of Agronomy, Purdue University, West Lafayette, Indiana

Professor, Agronomy Department, University of Nebraska, Lincoln, Nebraska

Professor of Soil Chemistry, Extension, Agronomy Department, University of Illinois, Urbana, Illinois

Professor of Agronomy, Department of Agronomy, University of Nebraska, Lincoln, Nebraska

Professor, Department of Agronomy and Range Science, University of California, Davis, California

Soil Scientist, Agricultural Research Service, U.S. Department of Agriculture, University of Nebraska, Lincoln, Nebraska

Professor of Soil Science, Department of Soil and Environmental Sciences, University of California, Riverside, California

Soil Scientist and Professor, Southern Experiment Station, University of Minnesota, Waseca, Minnesota

Formerly Extension Soils Specialist, University of California, Davis, California. Currently Director of Cooperative Extension, College of Agriculture, University of Arizona, Tucson, Arizona

Professor of Soil Science, Department of Agronomy, Cornell University, Ithaca, New York

Professor of Soil Science, Agricultural Research and Education Center, University of Florida, Quincy, Florida

Agricultural Engineer, Yuma Valley Agricultural Center, University of Arizona, Yuma, Arizona

Agriculturist (retired), National Fertilizer Development Center, Tennessee Valley Authority, Muscle Shoals, Alabama

Professor of Plant Physiology, Department of Agronomy, University of Wisconsin, Madison, Wisconsin

Associate Professor, Department of Entomology, University of Wisconsin, Madison, Wisconsin
Joseph H. Sherrard Research Associate, Department of Agronomy, University of Illinois, Urbana, Illinois
Lee E. Sommers Professor of Agronomy, Agronomy Department, Purdue University, West Lafayette, Indiana
Paul J. Stangel Deputy Managing Director, International Fertilizer Development Center, Muscle Shoals, Alabama
C. Y. Tsai Professor of Genetics, Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana
Billy B. Tucker Regents Professor-Agronomy, Agronomy Department, Oklahoma State University, Stillwater, Oklahoma
T. C. Tucker Professor, Soils, Water, and Engineering Department, University of Arizona, Tucson, Arizona
Fred T. Turner Professor of Soils and Plant Nutrition, Agriculture Research and Extension Center, Texas A&M University, Beaumont, Texas
Peter van Berkum Biochemist, Nitrogen Fixation and Soybean Genetics Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Beltsville Agricultural Research Center, Beltsville, Maryland
Regis D. Voss Professor of Agronomy, Agronomy Department, Iowa State University, Ames, Iowa
L. F. Welch Professor of Soil Fertility, Department of Agronomy, University of Illinois, Urbana, Illinois
B. R. Wells Professor, Agronomy Department, University of Arkansas, Fayetteville, Arkansas
K. L. Wells Extension Professor-Soils, Department of Agronomy, University of Kentucky, Lexington, Kentucky
D. G. Westfall Professor, Department of Agronomy, Colorado State University, Fort Collins, Colorado
W. J. Wiltbank Professor (Horticulturist), Department of Fruit Crops, University of Florida, Gainesville, Florida
<table>
<thead>
<tr>
<th>Non-SI Units</th>
<th>Multiply</th>
<th>To obtain</th>
</tr>
</thead>
<tbody>
<tr>
<td>acre</td>
<td>4.05×10^1</td>
<td>square meter, m^2</td>
</tr>
<tr>
<td>acre</td>
<td>0.405</td>
<td>hectare, ha ($10^4 m^2$)</td>
</tr>
<tr>
<td>acre</td>
<td>4.05×10^{-3}</td>
<td>square kilometer, $km^2 (10^6 m^3)$</td>
</tr>
<tr>
<td>Angstrom unit</td>
<td>0.1</td>
<td>nanometer, nm (10^{-6} m)</td>
</tr>
<tr>
<td>atmosphere</td>
<td>0.101</td>
<td>megapascal, MPa (10^6 Pa)</td>
</tr>
<tr>
<td>bar</td>
<td>0.1</td>
<td>megapascal, MPa (10^6 Pa)</td>
</tr>
<tr>
<td>British thermal unit</td>
<td>1.05×10^1</td>
<td>joule, J</td>
</tr>
<tr>
<td>calorie</td>
<td>4.19</td>
<td>joule, J</td>
</tr>
<tr>
<td>calorie per square centimeter minute</td>
<td>698</td>
<td>watt per square meter, W m^{-2}</td>
</tr>
<tr>
<td>calorie per square centimeter (langley)</td>
<td>4.19×10^4</td>
<td>joules per square meter, J m^{-2}</td>
</tr>
<tr>
<td>cubic feet</td>
<td>0.028</td>
<td>cubic meter, m^3</td>
</tr>
<tr>
<td>cubic feet</td>
<td>28.3</td>
<td>liter, L (10^{-3} m3)</td>
</tr>
<tr>
<td>cubic inch</td>
<td>1.64×10^3</td>
<td>cubic meter, m^3</td>
</tr>
<tr>
<td>dyne</td>
<td>3.7×10^9</td>
<td>bequerel, Bq</td>
</tr>
<tr>
<td>degrees (angle)</td>
<td>1.75×10^{-2}</td>
<td>radian, rad</td>
</tr>
<tr>
<td>erg</td>
<td>10^{-6}</td>
<td>newton, N</td>
</tr>
<tr>
<td>foot</td>
<td>0.305</td>
<td>meter, m</td>
</tr>
<tr>
<td>foot-pound</td>
<td>1.36</td>
<td>joule, J</td>
</tr>
<tr>
<td>gallon</td>
<td>3.78</td>
<td>liter, L (10^{-3} m3)</td>
</tr>
<tr>
<td>gallon per acre</td>
<td>9.35</td>
<td>liter per hectare, L ha$^{-1}$</td>
</tr>
<tr>
<td>gram per cubic centimeter</td>
<td>1.00</td>
<td>megagram per cubic meter, Mg m$^{-3}$</td>
</tr>
<tr>
<td>gram per square decimeter hour</td>
<td>27.8</td>
<td>milligram per square meter</td>
</tr>
<tr>
<td>gram per square decimeter hour (transpiration)</td>
<td></td>
<td>second, mg m$^{-2}$ s$^{-1}$ (10$^{-3}$ g m$^{-2}$ s$^{-1}$)</td>
</tr>
<tr>
<td>inch</td>
<td>25.4</td>
<td>millimeter, mm (10^{-3} m)</td>
</tr>
<tr>
<td>micromole (H$_2$O) per square centimeter</td>
<td></td>
<td>milligram (H$_2$O) per square meter</td>
</tr>
<tr>
<td>(transpiration)</td>
<td>10000</td>
<td>second, mg m$^{-2}$ s$^{-1}$ (10$^{-3}$ g m$^{-2}$ s$^{-1}$)</td>
</tr>
<tr>
<td>micron</td>
<td>1.00</td>
<td>micrometer, μm (10^{-6} m)</td>
</tr>
<tr>
<td>mile</td>
<td>1.61</td>
<td>kilometer, km (10^{3} m)</td>
</tr>
<tr>
<td>mile per hour</td>
<td>0.477</td>
<td>meter per second, m s$^{-1}$</td>
</tr>
<tr>
<td>milligram per square decimeter hour (apparent photosynthesis)</td>
<td>0.0278</td>
<td>milligram per square meter</td>
</tr>
<tr>
<td>milligram per square decimeter hour (transpiration)</td>
<td>10000</td>
<td>milligram per square meter</td>
</tr>
<tr>
<td>millimho per centimeter</td>
<td>0.1</td>
<td>siemen per meter, S m^{-1}</td>
</tr>
<tr>
<td>ounce</td>
<td>28.4</td>
<td>gram, g (10^{-3} kg)</td>
</tr>
<tr>
<td>ounce (fluid)</td>
<td>2.96×10^{-3}</td>
<td>liter, L (10^{-3} m3)</td>
</tr>
<tr>
<td>pint (liquid)</td>
<td>0.473</td>
<td>liter, L (10^{-3} m3)</td>
</tr>
<tr>
<td>pound</td>
<td>454</td>
<td>gram, g (10^{-3} kg)</td>
</tr>
<tr>
<td>pound per acre</td>
<td>1.12</td>
<td>kilogram per hectare, kg ha$^{-1}$</td>
</tr>
<tr>
<td>pound per acre</td>
<td>1.12×10^{-3}</td>
<td>megagram per hectare, Mg ha$^{-1}$</td>
</tr>
<tr>
<td>pound per bushel</td>
<td>12.87</td>
<td>kilogram per cubic meter, kg m$^{-3}$</td>
</tr>
<tr>
<td>pound per cubic foot</td>
<td>16.02</td>
<td>kilogram per cubic meter, kg m$^{-3}$</td>
</tr>
<tr>
<td>pound per cubic inch</td>
<td>2.77×10^4</td>
<td>kilogram per cubic meter, kg m$^{-3}$</td>
</tr>
<tr>
<td>pound per square foot</td>
<td>47.9</td>
<td>pascal, Pa</td>
</tr>
<tr>
<td>pound per square inch</td>
<td>6.90×10^1</td>
<td>pascal, Pa</td>
</tr>
<tr>
<td>quart (liquid)</td>
<td>0.946</td>
<td>liter, L (10^{-3} m3)</td>
</tr>
<tr>
<td>quintal (metric)</td>
<td>102</td>
<td>kilogram, kg</td>
</tr>
<tr>
<td>rad</td>
<td>1.00</td>
<td>0.01 Gy</td>
</tr>
<tr>
<td>roentgen</td>
<td>1.00</td>
<td>2.58 $ \times 10^{-4}$ (coulomb) kg$^{-1}$</td>
</tr>
<tr>
<td>square centimeter per gram</td>
<td>0.1</td>
<td>square meter per kilogram, m2 kg$^{-1}$</td>
</tr>
<tr>
<td>square feet</td>
<td>9.29×10^{-3}</td>
<td>square meter, m2</td>
</tr>
<tr>
<td>square inch</td>
<td>645</td>
<td>square millimeter, mm2 (10^{-4} m2)</td>
</tr>
<tr>
<td>square mile</td>
<td>2.59</td>
<td>square kilometer, km2</td>
</tr>
<tr>
<td>square millimeter per gram</td>
<td>10^{-3}</td>
<td>square meter per kilogram, m2 kg$^{-1}$</td>
</tr>
<tr>
<td>temperature ($^\circ$F - 32)</td>
<td>0.556</td>
<td>temperature, $^\circ$C</td>
</tr>
<tr>
<td>temperature ($^\circ$C + 273)</td>
<td>1</td>
<td>temperature, K</td>
</tr>
<tr>
<td>ton (metric)</td>
<td>109</td>
<td>kilogram, kg</td>
</tr>
<tr>
<td>ton (2000 lb)</td>
<td>907</td>
<td>kilogram, kg</td>
</tr>
<tr>
<td>ton (2000 lb) per acre</td>
<td>2.24</td>
<td>megagram per hectare, Mg ha$^{-1}$</td>
</tr>
</tbody>
</table>