The Role of Phosphorus in Agriculture
The Role of Phosphorus in Agriculture

Editorial Committee: F. E. KHASAWNEH, chairman
E. C. SAMPLE
E. J. KAMPRATH

Symposium Planning Committee: F. E. KHASAWNEH, co-chairman
E. C. SAMPLE, co-chairman
E. O. HUFFMAN
S. R. OLESEN
ALEX POPE

Coordinating Editor: MATTHIAS STELLY

Managing Editor: RICHARD C. DINAUER

Published by: American Society of Agronomy
Crop Science Society of America
Soil Science Society of America
Madison, Wisconsin USA

1980
CONTENTS

FOREWORD ... xii
PREFACE ... xiii
AN OVERVIEW ... xiv
CONTRIBUTORS .. xv
CONVERSION FACTORS FOR U.S. AND METRIC UNITS xviii

1 World Phosphate Reserves and Resources

JAMES B. CATHCART

I. Introduction ... 1
II. Definitions ... 3
III. World Phosphate Reserves and Resources 5
IV. Comparison to Other Estimates 13
LITERATURE CITED .. 17

2 The Phosphate Industry of the United States

JAMES B. CATHCART

I. Introduction ... 19
II. Economic Factors .. 21
III. Phosphate Deposits—Atlantic and Gulf Coastal Plains 26
IV. Phosphate Deposits—Central United States 32
V. Phosphate Deposits—Western United States 36
VI. Offshore Deposits .. 38
VII. Environmental Considerations 39
VIII. Conservation ... 40
IX. Outlook for the Future ... 40
LITERATURE CITED .. 41

3 Evaluation of Phosphatic Raw Materials

G. H. MC CLELLAN AND L. R. GREMILLION

I. Introduction .. 43
II. Phosphate Mineralogy ... 44
III. Accessory Minerals ... 45
IV. Texture of Phosphate Rocks 48
V. Characterization Methods ... 52
VI. Utilization of Characterization Data 61
VII. Characterization of Marginal Phosphate Ores 74
VIII. Future Research Needs ... 78
LITERATURE CITED .. 79

4 Phosphate Raw Materials and Fertilizers: Part I—A Look Ahead

JAMES R. LEHR

I. Introduction ... 81
II. Phosphate Raw Materials: Present and Future 82
III. Optional Fertilizer Uses of Phosphate Rock 90
IV. Future Outlook for Phosphate Fertilizers 109
4 Phosphate Raw Materials and Fertilizers: Part II—A Case History of Marginal Raw Materials
JOHN HOARE

I. Introduction .. 121
II. Exploring the Options .. 123
LITERATURE CITED .. 127

5 Sulfur Requirements of the Phosphate Fertilizer Industry
D. W. BIXBY

I. Introduction .. 129
II. Statistics of Past and Present Use 129
III. Projections of Future Needs 137
IV. Future Supply Picture ... 140
LITERATURE CITED .. 150

6 Phosphoric Acid Technology
NORMAN ROBINSON

I. Introduction .. 151
II. Principles of Manufacture by the Wet Process 152
III. Worldwide Trends in Phosphoric Acid Processes 162
IV. Suitability of World Phosphate Rocks for Phosphoric Acid
 Manufacture .. 183
LITERATURE CITED .. 192

7 Phosphate Fertilizers and Process Technology
RONALD D. YOUNG AND CHARLES H. DAVIS

I. Introduction .. 195
II. Current Products and Processes 196
III. New Process Technology .. 218
IV. Environmental Problems in the Phosphate Fertilizer Industry 223
LITERATURE CITED .. 225

8 World Phosphate Fertilizer Supply-Demand Outlook
E. A. HARRE AND K. F. ISHERWOOD

I. Introduction .. 227
II. Components of Fertilizer Supply-Demand 228
III. Forecasting of Fertilizer Supply-Demand 230
IV. Supply-Demand Outlook for North America 231
V. World Phosphate Market Outlook 234
VI. World Phosphate Supplies ... 236
VII. Problems in Assessing Future Market Outlook 238
LITERATURE CITED .. 238

9 Energy Requirements for the Production of Phosphate Fertilizers
WILLIAM C. WHITE AND KARL T. JOHNSON

I. Introduction .. 241
II. Production Capacity .. 242
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>vii</th>
</tr>
</thead>
<tbody>
<tr>
<td>III. Phosphate Rock</td>
<td>242</td>
</tr>
<tr>
<td>IV. Sulfur</td>
<td>244</td>
</tr>
<tr>
<td>V. Wet Process Phosphoric Acid</td>
<td>244</td>
</tr>
<tr>
<td>VI. Ammonium Phosphates</td>
<td>245</td>
</tr>
<tr>
<td>VII. Triple Superphosphate</td>
<td>246</td>
</tr>
<tr>
<td>VIII. Normal Superphosphate</td>
<td>246</td>
</tr>
<tr>
<td>IX. Environmental Protection</td>
<td>246</td>
</tr>
<tr>
<td>X. Energy Conservation</td>
<td>249</td>
</tr>
<tr>
<td>LITERATURE CITED</td>
<td>250</td>
</tr>
</tbody>
</table>

10 Energy of Phosphate Fertilizer Applications and Food Energy Returns

WILLIAM C. BURROWS AND ORVIS P. ENGELSTAD

I. Introduction	251
II. Phosphate Fertilizer in the Agricultural Energy Input Spectrum	252
III. Phosphate Fertilizer in the Agricultural Energy Output Spectrum	254
LITERATURE CITED	262

11 Reactions of Phosphate Fertilizers in Soils

E. C. SAMPLE, R. J. SOPER, AND G. J. RACZ

I. Introduction	263
II. Phosphate Retention by Soil Constituents	264
III. Sequence of Events After Fertilizer Application	274
IV. Characterization of Soil-Phosphorus Reactions: Methodology	288
V. Summary Statement and Future Research Needs	302
LITERATURE CITED	304

12 Agronomic Effectiveness of Phosphate Fertilizers

O. P. ENGELSTAD AND G. L. TERNAN

I. Introduction	311
II. Fertilizer Properties Affecting Crop Response to Applied P	311
III. Soil and Management Factors Affecting Crop Response to P Fertilizers	321
IV. Changes in Source Needs Resulting from Rising Soil P Levels	328
V. Source Needs in the Tropics	328
LITERATURE CITED	329

13 Evaluation and Utilization of Residual Phosphorus in Soils

N. J. BARROW

I. Introduction	333
II. Definition and Measurement of Residual Value	333
III. Factors Involved in the Decrease in Effectiveness of P Fertilizers	335
IV. Characteristics of the Slow Reactions which Follow Adsorption	340
V. Access of Plants to Residual P	349
VI. Evaluation of Fertilizer Residues	352
LITERATURE CITED	355
14 Use and Limitations of Physical-Chemical Criteria for Assessing the Status of Phosphorus in Soils

S. R. OLSEN AND F. E. KHASAWNEH

I. Introduction .. 361
II. Physico-Chemical Characteristics of Soil Phosphorus with Respect to Plant Growth ... 362
III. Physical Chemical Criteria with Respect to Soil P Characterization .. 379
IV. The Integrated Overview ... 401
LITERATURE CITED .. 404

15 Assessing Organic Phosphorus in Soils

GEORGE ANDERSON

I. Introduction .. 411
II. Biological Immobilization of Soil and Fertilizer P 411
III. Characterization of Soil Organic P 417
IV. Availability of Soil Organic Phosphate 424
V. Future Research Needs ... 427
LITERATURE CITED .. 428

16 Conventional Soil and Tissue Tests for Assessing the Phosphorus Status of Soils

E. J. KAMPRATH AND M. E. WATSON

I. Introduction .. 433
II. Evaluation of Common Soil Test Extractants 434
III. Soil Solution P as a Measure of Available P 444
IV. Use of Plant Analysis in Assessing Soil P Status 447
V. Future Research Needs ... 464
LITERATURE CITED .. 464

17 Management Considerations for Acid Soils with High Phosphorus Fixation Capacity

PEDRO A. SANCHEZ AND GORO UEHARA

I. Introduction .. 471
II. Geographical Distribution of Soils with High Phosphorus Fixation Capacity ... 473
III. Magnitude and Measurement of High Phosphorus Fixation 475
IV. High Input Strategy: Phosphorus as an Amendment 487
V. Low Input Management Strategy 495
VI. Research Needs ... 508
LITERATURE CITED .. 509

18 Use of Waste Materials as Sources of Phosphorus

L. E. SOMMERS AND A. L. SUTTON

I. Introduction .. 515
II. Composition of Wastes ... 516
III. Plant Availability of Phosphorus in Wastes 523
IV. Waste-Induced Changes in Soil Phosphorus 530
V. Constraints on Application of Wastes on Agricultural Land 532
VI. Potential Phosphorus Supply in Waste Materials 536
LITERATURE CITED .. 538
CONTENTS

23 Interactions of Phosphorus with Other Elements in Soils and in Plants

FRED ADAMS

I. Introduction .. 655
II. Nitrogen .. 656
III. Calcium .. 657
IV. Magnesium .. 660
V. Potassium ... 660
VI. Aluminum ... 661
VII. Iron ... 663
VIII. Manganese ... 666
IX. Zinc .. 667
X. Copper .. 670
XI. Sulfate .. 671
XII. Molybdenum ... 671
XIII. Boron .. 672
XIV. Silicate .. 673
LITERATURE CITED .. 674

24 Phosphate Nutrition of Corn, Sorghum, Soybeans, and Small Grains

J. J. HANWAY AND R. A. OLSON

I. Introduction .. 681
II. Phosphorus Uptake ... 683
III. Phosphorus Removal and Phosphorus Recycling in Crop Residues 685
IV. Yield—Phosphorus Concentration Relationships 686
V. Factors Influencing Phosphorus Uptake and Utilization 687
VI. Relation Between Phosphorus Nutrition and Quality of Harvested Plant Parts .. 690
LITERATURE CITED .. 691

25 Phosphorus Nutrition of Cotton, Peanuts, Rice, Sugarcane, and Tobacco

L. E. NELSON

I. Introduction .. 693
II. Cotton .. 694
III. Peanut .. 702
IV. Rice .. 708
V. Sugarcane .. 715
VI. Tobacco .. 722
LITERATURE CITED .. 729

26 Phosphorus Nutrition of Vegetable Crops and Sugar Beets

O. A. LORENZ AND M. T. VITTUM

I. Introduction .. 737
II. Phosphorus Composition of Vegetables and Sugar Beets 738
III. Phosphorus Uptake Demand Patterns 744
IV. Crop Responses and Phosphorus Fertilization 746
V. Phosphorus Nutrition and Crop Quality 754
VI. Relation of Soil P Levels to Crop Residue 755
VII. Effects of Excess P ... 757
CONTENTS

VIII. Future Considerations ... 757
LITERATURE CITED .. 759

27 Phosphorus Nutrition and Fertilization of Forest Trees

RUSSELL BALLARD

I. Introduction .. 763
II. Phosphorus Nutrition in Forest Nurseries 764
III. Phosphorus Nutrition of Forest Trees 767
IV. Phosphorus Fertilization of Forest Stands 780
V. Determination of P Fertilizer Requirements 790
VI. Future Research Needs ... 795
LITERATURE CITED ... 796

28 Phosphorus Nutrition of Forages

D. A. MAYS, S. R. WILKINSON, AND C. V. COLE

I. Introduction .. 805
II. Relationships of Phosphorus Application Techniques to Root
 Morphology .. 808
III. Phosphorus Nutrition of Cool-Season Grasses and Legumes 812
IV. Phosphorus Nutrition of Warm-Season Grasses and Legumes 820
V. Phosphorus Nutrition of Semiarid Grasslands 830
VI. Phosphorus Cycling in Grasslands 834
LITERATURE CITED .. 840

29 Relationship Between Phosphorus Nutrition of Plants and the
Phosphorus Nutrition of Animals and Man

R. L. REID

I. Introduction .. 847
II. Phosphorus Requirements of Animals 849
III. Factors Affecting the Phosphorus Content of Plants 853
IV. Availability of Phosphorus in Diets 862
V. Maintaining Adequate Phosphorus Nutrition in Animals 866
LITERATURE CITED .. 879

Glossary of Common and Scientific Names of Plants and Other Organisms ... 887
Glossary of Mineral Compositions .. 891
Subject Index .. 893
FOREWORD

Without phosphorus in the environment no living organisms could exist. Phosphorus is present in all plant and animal tissue. It is necessary for such life processes as photosynthesis, the synthesis and breakdown of carbohydrates, and the transfer of energy within the plant. Phosphorus is taken up by the plant from the soil. Unless the soil contains adequate phosphorus or it is supplied to the soil from external sources, plant growth will be limited.

Phosphorus does not occur as abundantly in soils as does the other major nutrients, nitrogen and potassium. The content of phosphorus ranges from about 100 to 2,500 kg/ha and averages about 1,000 kg/ha in the surface 20 cm of a soil. Phosphorus occurs in both inorganic and organic forms in the soil. Only a small fraction of the total phosphorus is in a form available to plants.

Plants do not require as large quantities of phosphorus as they do nitrogen and potassium. But phosphorus is just as essential. Unlike nitrogen which can be returned to the soil by fixation from the air, phosphorus cannot be replenished except from external sources once it leaves the soil in agricultural products or by erosion.

The phosphorus contained in 9,400 kg/ha of corn grain (150 bu/acre) contains about 25 kg/ha of phosphorus or about 1/40 of that contained in the surface 20 cm of a typical American soil. Removal of phosphorus from the soil in food or fiber crops over a few decades can be a significant portion of that contained in the pedon. Thus, under many systems of farming, phosphorus must be supplied to the soil from external sources, principally as mineral phosphorus fertilizer, with smaller amounts from agricultural processing and municipal wastes.

Because of the importance of phosphorus in agriculture and because of the limited supplies in most soils, members of the American Society of Agronomy, the Crop Science Society of America, and the Soil Science Society of America believe that this monograph is a much needed treatise on the subject. Its purpose is to examine all aspects of the manufacture and of supplies of phosphorus fertilizers and the best possible management of phosphorus as a plant nutrient in agriculture. The editors and the authors are outstanding authorities in the field. The monograph will be of value to all scientists, students, and administrators who deal with phosphorus in agriculture.

June 1980

Roger L. Mitchell, president
American Society of Agronomy

Billy E. Caldwell, president
Crop Science Society of America

William E. Larson, president
Soil Science Society of America
PREFACE

The Role of Phosphorus in Agriculture is a compilation of papers presented at a symposium held at Muscle Shoals, Alabama, June 1-3, 1976, and cosponsored by the Tennessee Valley Authority, the American Society of Agronomy, the Soil Science Society of America, and the Crop Science Society of America. The objectives of the symposium were to assemble recognized authorities to summarize current knowledge about phosphorus as it relates to agriculture and to provide an authoritative reference work on this subject.

Much of the credit for the scope and range of topics in this book goes to the Planning Committee, which consisted of E. O. Huffman, S. R. Olsen, and Alex Pope, with F. E. Khasawneh and E. C. Sample as cochairmen. The committee spent many hours outlining a comprehensive coverage of fertilizer phosphorus and choosing a slate of authors knowledgeable about each topic. Through their efforts the book achieves the goal of covering phosphorus from the mine to the end use in fertilizers. Topics include: (i) surveys of world and U.S. phosphate ore deposits, and evaluation of these raw materials; (ii) new developments in phosphoric acid and phosphate fertilizer technology and in processing low-grade deposits; (iii) patterns in supply-demand trends of phosphate fertilizers; (iv) reactions of phosphate fertilizers in soils and methods of assessing the status of soil phosphorus, including residual and organic forms; (v) agronomic factors related to the effectiveness of various phosphate sources, both inorganic and organic; (vi) phosphate nutrition of major crops and the relationship between crop nutrition and nutrition of humans and animals; and (vii) the impact of fertilizer phosphorus on the environment. The committee felt that symposium topics should be restricted to phosphorus as a nutrient; hence, phosphorus in organophosphate pesticides is not included in the book.

The authors represent a cross section of disciplines and organizations including academic, governmental, and industrial. The Editorial Committee is grateful to these authors and to the organizations they represent for their outstanding contributions. We are especially grateful to these authors for taking additional time to ensure that coverage of their subject matter is current and up-to-date in spite of the time which has elapsed since the symposium. The committee also acknowledges the assistance of numerous anonymous reviewers.

Special recognition also goes to Richard C. Dinauer, Matthias Stelly, and other members of the headquarters office of the American Society of Agronomy for their help with the symposium and in editing and publishing this book. The assistance of Mrs. Peggy Kelley of the Tennessee Valley Authority in planning and conducting the symposium, handling most of the correspondence, and in editing the manuscripts is gratefully acknowledged.

May 1980

F. E. Khasawneh, chairman, Editorial Committee
Tennessee Valley Authority, Muscle Shoals, Alabama

E. C. Sample
Tennessee Valley Authority, Muscle Shoals, Alabama

E. J. Kamprath
North Carolina State University, Raleigh, N.C.
AN OVERVIEW—A LOOK AHEAD

This symposium on The Role of Phosphorus in Agriculture is most timely. New challenges are facing us of a magnitude and nature that we have never encountered before. World food and fiber needs are increasing rapidly. The quality of phosphate ores is declining so that new technology must be introduced or shortages will develop. Environmental quality concerns are appearing in mining, manufacture, and use of phosphates. Ways to conserve energy in fertilizer manufacture and use are becoming important in view of energy shortages. Farming systems are changing, and farmers are placing ever greater emphasis on inputs to increase yields and profits. Residual levels of applied phosphorus are building in many intensively farmed soils of the industrial nations on the one hand while many developing nations are having to consider farming the extremely P-deficient high P-fixing acid soils in the tropics and subtropics.

The symposium addresses itself directly to many of these challenges. Its main purpose, however, is to review in depth the present state of knowledge in all phases of phosphorus technology and manufacture, the status of raw materials, reactions and interactions of P in soils, methods for predicting P needs of crops, and nutrition of major crops and animals. Most of the symposium’s reviewers also have pointed out the key problems and areas needing further research.

More research in practically all phases of phosphorus in agriculture, both short and long term, is needed and could have tremendous impact upon farmers, consumers, the fertilizer industry, and entire nations. Many of the pressing problems facing us need immediate solution. It is recognized too that research in phosphorus in agriculture involves a highly complex and difficult area.

There is no substitute for phosphorus in the production of crops and animals for food, fiber, and other essential needs. It behooves researchers, administrators, and governmental institutions alike to take necessary steps to increase research activity in phosphorus for agriculture.

July 1979

Lewis B. Nelson, manager
Office of Agricultural and Chemical Development
TVA, Muscle Shoals, Alabama

E. O. Huffman, former director
Division of Chemical Development
TVA, Muscle Shoals, Alabama
CONTRIBUTORS

Fred Adams
Professor of Soil Chemistry, Department of Agronomy and Soils, Auburn University, Auburn, Alabama

George Anderson
Head, Department of Soil Organic Chemistry, Macaulay Institute for Soil Research, Craigiebuckler, Aberdeen, Scotland

Russell Ballard
Formerly Scientist, Forest Research Institute, Rotorua, New Zealand. Now Associate Professor of Forest Soils and Director of the North Carolina State Forest Fertilization Cooperative, School of Forest Resources, North Carolina State University, Raleigh, North Carolina

Stanley A. Barber
Professor of Agronomy, Department of Agronomy, Purdue University, West Lafayette, Indiana

N. J. Barrow
Senior Principal Research Scientist, CSIRO, Division of Land Resources Management, Wembley, Western Australia

David W. Bixby
Director, Fertilizer Technology Research, The Sulphur Institute, Washington, D.C.

William C. Burrows
Senior Staff Scientist, Deere and Company Technical Center, Moline, Illinois

James B. Cathcart
Commodity Geologist, Phosphate, U.S. Geological Survey, Denver, Colorado

C. V. Cole
Soil Scientist, Science and Education Administration, Agricultural Research, U.S. Department of Agriculture, Fort Collins, Colorado

Charles H. Davis
Director of Chemical Development, Division of Chemical Development, Tennessee Valley Authority, National Fertilizer Development Center, Muscle Shoals, Alabama

Orvis P. Engelstad
Chief, Soils and Fertilizer Research Branch, National Fertilizer Development Center, Tennessee Valley Authority, Muscle Shoals, Alabama

Louis R. Gremillion
Geologist, Fundamental Research Branch, Division of Chemical Development, National Fertilizer Development Center, Tennessee Valley Authority, Muscle Shoals, Alabama. Deceased 29 December 1979

John J. Hanway
Professor, Agronomy Department, Iowa State University, Ames, Iowa

Edwin A. Harre
Agricultural Economist, Economics and Market Research Section, National Fertilizer Development Center, Tennessee Valley Authority, Muscle Shoals, Alabama

John S. Hoare
Chief Engineer, British Phosphate Commissioners, Melbourne, Victoria, Australia

Keith F. Isherwood
Head, Fertilizer Service, International Superphosphate and Compound Manufacturers Association (ISMA, Ltd), Paris, France
Karl T. Johnson Director, Member Services, The Fertilizer Institute, Washington, D.C.

Eugene J. Kamprath Professor, Department of Soil Science, North Carolina State University, Raleigh, North Carolina

Fayez E. Khasawneh Research Soil Scientist, Soils and Fertilizer Research Branch, National Fertilizer Development Center, Tennessee Valley Authority, Muscle Shoals, Alabama

Victor J. Kilmer Formerly Chief, Soils and Fertilizer Research Branch, National Fertilizer Development Center, Tennessee Valley Authority, Muscle Shoals, Alabama, Now retired

James R. Lehr Senior Scientist, Fundamental Research Branch, Division of Chemical Development, National Fertilizer Development Center, Tennessee Valley Authority, Muscle Shoals, Alabama

Oscar A. Lorenz Professor of Vegetable Crops, Department of Vegetable Crops, University of California, Davis, California

David A. Mays Agronomist, Soils and Fertilizer Research Branch, National Fertilizer Development Center, Tennessee Valley Authority, Muscle Shoals, Alabama

Guerry H. McClellan Research Coordinator, Fertilizer Technology Division, International Fertilizer Development Center, Muscle Shoals, Alabama

Lyle E. Nelson Professor and Agronomist, Department of Agronomy, Mississippi State University, Mississippi State, Mississippi

Sterling R. Olsen Research Leader, Science and Education Administration, Agricultural Research, U.S. Department of Agriculture, Fort Collins, Colorado

Robert A. Olson Professor, Agronomy Department, University of Nebraska, Lincoln, Nebraska

Peter G. Ozanne Senior Principal Research Scientist, Division of Land Resources Management, Institute of Earth Resources, CSIRO, Wembley, Western Australia

Geza J. Racz Professor, Department of Soil Science, University of Manitoba, Winnipeg, Manitoba, Canada

Robert L. Reid Professor of Animal Science, College of Agriculture and Forestry, West Virginia University, Morgantown, West Virginia

Norman Robinson Chief Chemical Engineer and Deputy Head of Technical Development, Fertilizer Division, Levington Research Station, Fisons, Ltd, Levington, Ipswich, Suffolk, England

Eugene C. Sample Research Soil Chemist, Soils and Fertilizer Research Branch, National Fertilizer Development Center, Tennessee Valley Authority, Muscle Shoals, Alabama

Pedro A. Sanchez Associate Professor of Soil Science and Coordinator for Tropical Soils Programs, Department of Soil Science, North Carolina State University, Raleigh, North Carolina
Lee E. Sommers
Professor of Agronomy, Agronomy Department, Purdue University, West Lafayette, Indiana

Robert J. Soper
Professor, Department of Soil Science, University of Manitoba, Winnipeg, Manitoba, Canada

Alan L. Sutton
Associate Professor, Department of Animal Science, Purdue University, West Lafayette, Indiana

Alan W. Taylor
Research Chemist, Soil Nitrogen and Environmental Chemistry Laboratory, Science and Education Administration, Agricultural Research, U.S. Department of Agriculture, Beltsville, Maryland

Gilbert L. Terman
Agronomist, Soils and Fertilizer Research Branch, National Fertilizer Development Center, Tennessee Valley Authority, Muscle Shoals, Alabama. Deceased 31 January 1979

Philip B. Tinker
Formerly Professor of Agricultural Botany, University of Leeds. Now Head, Department of Soils and Plant Nutrition, Rothamsted Experimental Station, Harpenden, Herts, England

Goro Uehara
Professor of Soil Science, Department of Agronomy and Soil Science, University of Hawaii, Honolulu, Hawaii

Morrill T. Vittum
Professor and Head, Department of Seed and Vegetable Sciences, New York State Agricultural Experiment Station, Cornell University, Geneva, New York

Maurice E. Watson
Assistant Professor, Ohio Agricultural Research and Development Center, Wooster, Ohio

Stanley R. Wilkinson
Soil Scientist, Southern Piedmont Conservation Research Center, Science and Education Administration, Agricultural Research, U.S. Department of Agriculture, Watkinsville, Georgia

William C. White
Senior Vice President, Member Services, The Fertilizer Institute, Washington, D.C.

Ronald D. Young
Chemical Engineer, Division of Chemical Development, National Fertilizer Development Center, Tennessee Valley Authority, Muscle Shoals, Alabama
CONVERSION FACTORS FOR U. S. AND METRIC UNITS

<table>
<thead>
<tr>
<th>Column 1</th>
<th>Column 2</th>
<th>To convert column 1 into column 2, multiply by</th>
<th>To convert column 2 into column 1, multiply by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.621 kilometer, km</td>
<td>mile, mi</td>
<td>1.609</td>
<td></td>
</tr>
<tr>
<td>1.094 meter, m</td>
<td>yard, yd</td>
<td>0.914</td>
<td></td>
</tr>
<tr>
<td>0.394 centimeter, cm</td>
<td>inch, in</td>
<td>2.54</td>
<td></td>
</tr>
<tr>
<td>Area</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.386 kilometer², km²</td>
<td>mile², mi²</td>
<td>2.590</td>
<td></td>
</tr>
<tr>
<td>247.1 kilometer², km²</td>
<td>acre, acre</td>
<td>0.00405</td>
<td></td>
</tr>
<tr>
<td>2.471 hectare, ha</td>
<td>acre, acre</td>
<td>0.405</td>
<td></td>
</tr>
<tr>
<td>Volume</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.00973 meter³, m³</td>
<td>acre-inch</td>
<td>102.8</td>
<td></td>
</tr>
<tr>
<td>3.532 hectoliter, hl</td>
<td>cubic foot, ft³</td>
<td>0.2832</td>
<td></td>
</tr>
<tr>
<td>2.838 hectoliter, hl</td>
<td>bushel, bu</td>
<td>0.352</td>
<td></td>
</tr>
<tr>
<td>0.0284 liter</td>
<td>bushel, bu</td>
<td>35.24</td>
<td></td>
</tr>
<tr>
<td>1.057 liter</td>
<td>quart (liquid), qt</td>
<td>0.946</td>
<td></td>
</tr>
<tr>
<td>Mass</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.102 ton (metric)</td>
<td>ton (U.S.)</td>
<td>0.9072</td>
<td></td>
</tr>
<tr>
<td>2.205 quintal, q</td>
<td>hundredweight, cwt (short)</td>
<td>0.454</td>
<td></td>
</tr>
<tr>
<td>2.205 kilogram, kg</td>
<td>pound, lb</td>
<td>0.454</td>
<td></td>
</tr>
<tr>
<td>0.035 gram, g</td>
<td>ounce (avdp), oz</td>
<td>28.35</td>
<td></td>
</tr>
<tr>
<td>Pressure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.50 bar</td>
<td>lb/inch², psi</td>
<td>0.06895</td>
<td></td>
</tr>
<tr>
<td>0.9869 bar</td>
<td>atmosphere, atm</td>
<td>1.013</td>
<td></td>
</tr>
<tr>
<td>0.9678 kg (weight)/cm²</td>
<td>atmosphere, atm</td>
<td>1.033</td>
<td></td>
</tr>
<tr>
<td>14.22 kg (weight)/cm²</td>
<td>lb/inch², psi</td>
<td>0.07031</td>
<td></td>
</tr>
<tr>
<td>14.70 atmosphere, atm</td>
<td>lb/inch², psi</td>
<td>0.06805</td>
<td></td>
</tr>
<tr>
<td>Yield or Rate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.446 ton (metric)/hectare</td>
<td>ton (U.S.)/acre</td>
<td>2.24</td>
<td></td>
</tr>
<tr>
<td>0.892 kg/ha</td>
<td>lb/acre</td>
<td>1.12</td>
<td></td>
</tr>
<tr>
<td>0.892 quintal/hectare</td>
<td>hundredweight/acre</td>
<td>1.12</td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| \[
\left(\frac{9}{5}^\circ C\right) + 32 \quad \text{Celsius} = \quad \frac{5}{9} (^\circ F - 32) \quad \quad \text{Fahrenheit}
\]
| 8.108 hectare-meters, ha-m | acre-feet | 0.1233 | |
| 97.29 hectare-meters, ha-m | acre-inches | 0.01028 | |
| 0.08108 hectare-centimeters, ha-cm | acre-feet | 12.33 | |
| 0.973 hectare-centimeters, ha-cm | acre-inches | 1.028 | |
| 0.00973 meters³, m³ | acre-inches | 102.8 | |
| 0.981 hectare-centimeters/hour, ha-cm/hour | feet³/sec | 1.0194 | |
| 440.3 hectare-centimeters/hour, ha-cm/hour | U.S. gallons/min | 0.00227 | |
| 0.00981 meters³/hour, m³/hour | feet³/sec | 101.94 | |
| 4.403 meters³/hour, m³/hour | U.S. gallons/min | 0.227 | |
| **Plant Nutrition Conversion—P and K** | | | |
| \[P \text{ (phosphorus)} \times 2.29 = P_2O_5 \] | | | |
| \[K \text{ (potassium)} \times 1.20 = K_2O \] | | | |

xviii