Alfalfa and Alfalfa Improvement
AGRONOMY

A Series of Monographs

The American Society of Agronomy and Academic Press published the first six books in this series. The General Editor of Monographs I to 6 was A. G. Norman. They are available through Academic Press, Inc., 111 Fifth Avenue, New York NY 10003.

2. BYRON T. SHAW, *Editor*, Soil Physical Conditions and Plant Growth, 1952
6. J. LEVITT: The Hardiness of Plants, 1956

The Monographs published since 1957 are available from the American Society of Agronomy, 677 S. Segoe Road, Madison, WI 53711.

7. JAMES N. LUTHIN, *Editor*, Drainage of Agricultural Lands, 1957
8. FRANKLIN A. COFFMAN, *Editor*, Oats and Oat Improvement, 1961
17. JAN VAN SCHILFGAARDE, *Editor*, Drainage for Agriculture, 1974
Alfalfa and Alfalfa Improvement

A. A. Hanson, editor
D. K. Barnes, co-editor
R. R. Hill, Jr. co-editor

Associate Editors
G. H. Heichel K. T. Leath
O. J. Hunt G. C. Marten
M. B. Tesar

Managing Editor: S. H. Mickelson
Assistant Editor: K. A. Holtgraver

Editor-in-Chief ASA Publications: G. H. Heichel
Editor-in-Chief CSSA Publications: C. W. Stuber
Editor-in-Chief SSSA Publications: D. E. Kissel

Number 29 in the series

AGRONOMY

American Society of Agronomy, Inc.
Crop Science Society of America, Inc.
Soil Science Society of America, Inc.
Publishers
Madison, Wisconsin, USA

1988
CONTENTS

FOREWORD ... xv
PREFACE .. xvii
CONTRIBUTORS .. xviii
CONVERSION FACTORS FOR SI AND NON-SI UNITS xxiv

1 Highlights in the USA and Canada .. 1
 D. K. Barnes, B. P. Goplen, and J. E. Baylor

 1-1 Alfalfa Distribution ... 2
 1-2 Origins of North American Germplasm 2
 1-3 Germplasm Use in Cultivar Development 3
 1-4 Germplasm Collection, Preservation, and Evaluation Improved ... 3
 1-5 Public and Industry Breeding Programs Change Emphasis 5
 1-6 Cultivar Descriptions are Standardized 6
 1-7 Seed Production Problems Change 6
 1-8 Canadian Forage Seed Project and Seeds Canada 7
 1-9 Canadian Seed Certification 8
 1-10 New Disease Resistance Developed 9
 1-11 New Insect Resistance Developed 10
 1-12 New Seeding Techniques 11
 1-13 Weed Control Increases 11
 1-14 Hay Preservatives Gain in Usage 12
 1-15 Feeding Value Measurements Improved 12
 1-16 Hay Quality Standards Developed 13
 1-17 Progress in Bloat Research 13
 1-18 Dinitrogen Fixation Improved 14
 1-19 Crop Growth Models Available 15
 1-20 Tissue Culture Success Encouraging 16
 1-21 Cytogenetic Studies Aid Breeding 16
 1-22 North American Alfalfa Improvement Conference Promotes Progress ... 17
 1-23 Keeping the Crop Competitive 18
 1-24 Significant Events ... 18
 References ... 22

2 World Distribution and Historical Development 25
 Réal Michaud, W. F. Lehman, and M. D. Rumbaugh

 2-1 Scientific and Vernacular Names 26
 2-2 Geographical Movement 27
 2-3 Distribution, Production, and Research Around the World References ... 31
 ... 82

3 The Genus *Medicago* and the Origin of the *Medicago sativa* Complex 93
 Carlos F. Quiros and Gary R. Bauchan
CONTENTS

4 Morphology and Anatomy

L. R. Teuber and M. A. Brick

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-1 Seed Morphology, Anatomy, and Development</td>
<td>125</td>
</tr>
<tr>
<td>4-2 Roots</td>
<td>132</td>
</tr>
<tr>
<td>4-3 The Crown</td>
<td>138</td>
</tr>
<tr>
<td>4-4 The Stem</td>
<td>139</td>
</tr>
<tr>
<td>4-5 The Leaf</td>
<td>148</td>
</tr>
<tr>
<td>4-6 The Flower</td>
<td>150</td>
</tr>
<tr>
<td>4-7 Summary</td>
<td>158</td>
</tr>
<tr>
<td>References</td>
<td>158</td>
</tr>
</tbody>
</table>

5 Environmental Physiology and Crop Growth

G. W. Fick, D. A. Holt, and D. G. Lugg

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-1 Seedling Growth and Development</td>
<td>164</td>
</tr>
<tr>
<td>5-2 Vegetative Growth</td>
<td>168</td>
</tr>
<tr>
<td>5-3 Reproductive Development</td>
<td>179</td>
</tr>
<tr>
<td>5-4 Computer Modeling</td>
<td>184</td>
</tr>
<tr>
<td>5-5 Summary</td>
<td>187</td>
</tr>
<tr>
<td>References</td>
<td>188</td>
</tr>
</tbody>
</table>

6 Carbon Assimilation, Partitioning, and Utilization

G. H. Heichel, R. H. Delaney, and H. T. Cralle

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-1 Leaf Carbon Dioxide Exchange</td>
<td>196</td>
</tr>
<tr>
<td>6-2 Root System Carbon Dioxide Exchange</td>
<td>205</td>
</tr>
<tr>
<td>6-3 Crop Community Carbon Dioxide Exchange</td>
<td>206</td>
</tr>
<tr>
<td>6-4 Carbon Dioxide Exchange and Yield</td>
<td>211</td>
</tr>
<tr>
<td>6-5 Photosynthate Partitioning and Utilization</td>
<td>213</td>
</tr>
<tr>
<td>6-6 Prospects for Improvement of Carbon Economy and Yield</td>
<td>220</td>
</tr>
<tr>
<td>References</td>
<td>222</td>
</tr>
</tbody>
</table>

7 Nodulation and Symbiotic Dinitrogen Fixation

C. P. Vance, G. H. Heichel, and D. A. Phillips

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-1 Establishing the Symbiosis</td>
<td>231</td>
</tr>
<tr>
<td>7-2 Nodule Development and Structure</td>
<td>234</td>
</tr>
<tr>
<td>7-3 Biochemistry of Dinitrogen Fixation</td>
<td>240</td>
</tr>
</tbody>
</table>
CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-4</td>
<td>Factors Affecting Dinitrogen Fixation</td>
<td>242</td>
</tr>
<tr>
<td>7-5</td>
<td>Dinitrogen Fixation by Alfalfa Communities</td>
<td>245</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>251</td>
</tr>
<tr>
<td>8</td>
<td>Cold and Heat Tolerance</td>
<td>259</td>
</tr>
<tr>
<td>J. S. McKenzie, Roger Paquin, and S. H. Duke</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-1</td>
<td>Cold Tolerance</td>
<td>260</td>
</tr>
<tr>
<td>8-2</td>
<td>Heat Tolerance</td>
<td>285</td>
</tr>
<tr>
<td>8-3</td>
<td>Prospects for Improvement</td>
<td>291</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>292</td>
</tr>
<tr>
<td>9</td>
<td>Alfalfa Establishment</td>
<td>303</td>
</tr>
<tr>
<td>M. B. Tesar and V. L. Marble</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9-1</td>
<td>Stand Density</td>
<td>303</td>
</tr>
<tr>
<td>9-2</td>
<td>Mixtures of Alfalfa and Grasses</td>
<td>304</td>
</tr>
<tr>
<td>9-3</td>
<td>Soil and Seedbed Preparation</td>
<td>306</td>
</tr>
<tr>
<td>9-4</td>
<td>Soil Preparation and Influence of Prior Crops</td>
<td>308</td>
</tr>
<tr>
<td>9-5</td>
<td>Seeding</td>
<td>310</td>
</tr>
<tr>
<td>9-6</td>
<td>Special Seeding Situations</td>
<td>325</td>
</tr>
<tr>
<td>9-7</td>
<td>Management During Seeding Year</td>
<td>327</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>329</td>
</tr>
<tr>
<td>10</td>
<td>Nutrition and Fertilizer Use</td>
<td>333</td>
</tr>
<tr>
<td>L. E. Lanyon and W. K. Griffith</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-1</td>
<td>Factors Affecting Nutrient Need</td>
<td>334</td>
</tr>
<tr>
<td>10-2</td>
<td>Soils and their Nutrient-Supplying Power</td>
<td>339</td>
</tr>
<tr>
<td>10-3</td>
<td>Soil Acidity and Liming</td>
<td>341</td>
</tr>
<tr>
<td>10-4</td>
<td>Nitrogen</td>
<td>345</td>
</tr>
<tr>
<td>10-5</td>
<td>Phosphorus</td>
<td>349</td>
</tr>
<tr>
<td>10-6</td>
<td>Potassium</td>
<td>352</td>
</tr>
<tr>
<td>10-7</td>
<td>Calcium and Magnesium</td>
<td>354</td>
</tr>
<tr>
<td>10-8</td>
<td>Sulfur</td>
<td>355</td>
</tr>
<tr>
<td>10-9</td>
<td>Boron</td>
<td>359</td>
</tr>
<tr>
<td>10-10</td>
<td>Other Micronutrients</td>
<td>361</td>
</tr>
<tr>
<td>10-11</td>
<td>Animal Manures and Municipal Wastes</td>
<td>362</td>
</tr>
<tr>
<td></td>
<td>Acknowledgment</td>
<td>364</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>364</td>
</tr>
<tr>
<td>11</td>
<td>Alfalfa Water Relations and Irrigation</td>
<td>373</td>
</tr>
<tr>
<td>C. C. Sheaffer, C. B. Tanner, and M. B. Kirkham</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-1</td>
<td>Physiological Effects of Water Deficits</td>
<td>373</td>
</tr>
<tr>
<td>11-2</td>
<td>Pathway of Water Movement</td>
<td>377</td>
</tr>
<tr>
<td>11-3</td>
<td>Crop Water Requirements</td>
<td>385</td>
</tr>
<tr>
<td>11-4</td>
<td>Crop Productivity and Water Use</td>
<td>388</td>
</tr>
<tr>
<td>11-5</td>
<td>Irrigation Scheduling</td>
<td>392</td>
</tr>
<tr>
<td>11-6</td>
<td>Irrigation Application Status</td>
<td>401</td>
</tr>
</tbody>
</table>
12 Cutting Schedules and Stands

C. C. Sheaffer, G. D. Lacefield, and V. L. Marble

12-1 The Importance of Cultivar Development 412
12-2 Crop Development and Cutting Systems 413
12-3 Harvesting on a Fixed Interval 415
12-4 Harvesting by Stage of Growth 419
12-5 Harvesting by Crown Shoot Development 420
12-6 Height of Cutting 422
12-7 Fall Harvest Management 423
12-8 Spring Management 427
12-9 Insect Relations 428
12-10 Stand Decline 429
12-11 Summary 430
References 430

13 Relationships with Other Species in a Mixture

Douglas S. Chamblee and Michael Collins

13-1 Principles of Competition 439
13-2 Specific Competitive Effects 441
13-3 Mutual Effects of Above- and Below-Ground Associations of Alfalfa-Grass Mixtures 446
13-4 Management Effects on Alfalfa-Grass Mixtures 450
13-5 Summary 456
References 457

14 Feeding Value (Forage Quality)

G. C. Marten, D. R. Buxton, and R. F Barnes

14-1 Characteristics of Alfalfa-Feeding Value 465
14-2 Preharvest Factors that Influence Feeding Value 472
14-3 Summary 483
References 484

15 Antiquality Factors and Nonnutritive Chemical Components

R. E. Howarth

15-1 Herbage Proteins 494
15-2 Ruminant Bloat 495
15-3 Phenolic Constituents 498
15-4 Tannins 500
15-5 Lignin 502
15-6 Saponins 503
15-7 Estrogenic Activity 505
15-8 Volatile Components 507
15-9 Minerals 507
CONTENTS

15-10 Alkaloids ... 508
15-11 Purines and Pyrimidines 508
15-12 Photosensitization 508
15-13 Protease Inhibitors 508
15-14 Allergenic Compounds 509
15-15 Summary ... 509
References ... 510

16 Pasture Production and Utilization 515

R. W. Van Keuren and A. G. Matches

16-1 Adaptation and Distribution of Alfalfa for Pasture .. 515
16-2 Alfalfa Pasture Management 516
16-3 Alfalfa as Pasture for Dairy Cows 521
16-4 Alfalfa as Pasture for Beef Cattle 523
16-5 Alfalfa as Pasture for Sheep 526
16-6 Effect of Alfalfa Estrogens 529
16-7 Alfalfa as Pasture for Swine 529
16-8 Alfalfa as Pasture for Poultry 530
16-9 Alfalfa as Pasture for Horses 531
16-10 Bloat in Animals on Alfalfa Pasture 531
16-11 Summary ... 532
References ... 532

17 Role in Livestock Feeding—Greenchop, Silage, Hay, and Dehy 539

H. R. Conrad and T. J. Klopfenstein

17-1 Postharvest Nutritional Changes 540
17-2 Nutritional Quality of Alfalfa Hay 542
17-3 Nutritional Value of Alfalfa Silage 544
17-4 Nutritive Value of Greenchopped Alfalfa 546
17-5 Dehy for Protein in Ruminants 546
17-6 Summary ... 549
References ... 550

18 Wet Fractionation Processes and Products 553

Neal A. Jorgensen and Richard G. Koegel

18-1 Reasons for Using the System 553
18-2 Production .. 555
18-3 Cell Rupture 555
18-4 Expression of Juice 556
18-5 Protein Separation 558
18-6 Protein Preservation 558
18-7 Deproteinized Juice 559
18-8 Utilization ... 559
18-9 Summary ... 564
References ... 564
CONTENTS

References ... 729

24 Cytology and Cytogenetics of Alfalfa 737

T. J. McCoy and E. T. Bingham

24-1 Microsporogenesis, Megasporogenesis, and Gametophyte Development ... 737
24-2 Fertilization and Embryo Development 739
24-3 Cytology of Meiotic and Gametophytic Abnormalities 741
24-4 Origin and Cytology of Euploids of Alfalfa 746
24-5 Origin, Cytology, and Uses of Aneuploids 754
24-6 Uses of Haploids 756
24-7 Cytogenetic and Genetic Confirmation of Autopolyploidy 756
24-8 Uses of the Ploidy Series 758
24-9 Cytogenetics of the *Medicago* Genus 760
24-10 Cytogenetics of Interspecific Hybrids Between *M. sativa* and Other *Medicago* Species 762
References ... 771

25 Breeding and Quantitative Genetics 777

M. D. Rumbaugh, J. L. Caddel, and D. E. Rowe

25-1 Breeding ... 777
25-2 Qualitative Genetics 794
25-3 Quantitative Genetics 794
References ... 805

26 Breeding for Yield and Quality 809

R. R. Hill, Jr., J. S. Shenk, and R. F Barnes

26-1 Yield ... 809
26-2 Quality ... 816
26-3 Summary ... 823
References ... 823

27 Breeding for Disease and Nematode Resistance 827

J. H. Elgin, Jr., R. E. Welty, and D. B. Gilchrist

27-1 Principles of Disease and Nematode Resistance Breeding 828
27-2 Breeding for Resistance to Specific Diseases 830
27-3 Summary ... 848
References ... 848

28 Breeding for Insect Resistance 859

E. L. Sorensen, R. A. Byers, and E. K. Horber

28-1 Categories and Causes of Resistance 860
28-2 Durability of Resistance 862
28-3 Role of Resistance in Integrated Control 863
28-4 Development of Plant Resistance 864
CONTENTS

19 Equipment for Harvesting, Transporting, Storing, and Feeding 567
 A. W. Pauli, V. L. Lechtenberg, and W. F. Wedin

 19–1 Harvesting .. 568
 19–2 Transporting ... 580
 19–3 Storage and Feeding 584
 19–4 Systems Analysis 593
 References .. 593

20 Geographic Adaptation and Cultivar Selection 595
 Bill Melton, Jim B. Moutray, and Joe H. Bouton

 20–1 Adaptation and Cultivar Development 596
 20–2 Cultivar Release Procedures 597
 20–3 Adaptation in Nonhumid Regions 599
 20–4 Adaptation in Humid Regions 608
 20–5 Adaptation in Canada 614
 References .. 618

21 Diseases and Nematodes 621
 Kenneth T. Leath, Donald C. Erwin, and Gerald D. Griffin

 21–1 Diseases of Leaves and Stems 622
 21–2 Diseases of Roots 640
 21–3 Diseases of the Vascular System 656
 21–4 The Alfalfa Disease Situation—An Overview 661
 References .. 662

22 Insects and Mites 671
 George R. Manglitz and Roger H. Ratcliffe

 22–1 Insects that Consume Foliage 671
 22–2 Insects that Suck Sap 678
 22–3 Insects that Feed on Roots 684
 22–4 Insects that Affect Seed Production 686
 22–5 Control .. 690
 22–6 Control Systems 694
 22–7 Summary ... 695
 References .. 695

23 Weeds and Weed Control 705
 Elroy J. Peters and Dean L. Linscott

 23–1 Losses Caused by Weeds 705
 23–2 Weed Problems 707
 23–3 Cultural Weed Control Methods: Alfalfa Seedings 710
 23–4 Chemical Weed Control Methods: Alfalfa Seedings 715
 23–5 No-Till and Other Methods of Establishment of Alfalfa 720
 23–6 Weed Control Methods: Established Stands 723
 23–7 Summary ... 729

References .. 695

Kenneth T. Leath, Donald C. Erwin, and Gerald D. Griffin

A. W. Pauli, V. L. Lechtenberg, and W. F. Wedin

Bill Melton, Jim B. Moutray, and Joe H. Bouton

George R. Manglitz and Roger H. Ratcliffe

Elroy J. Peters and Dean L. Linscott
CONTENTS

28-5 Summary .. 888
References ... 889

29 Alfalfa Tissue Culture 903
E. T. Bingham, T. J. McCoy, and K. A. Walker

29-1 Role of the Genotype in Regeneration from Callus,
 Suspension, and Protoplasts 905
29-2 Regeneration Physiology 909
29-3 Variability Among Regenerated Plants 913
29-4 Somatic Cell Selection 919
29-5 Somatic Cell Fusion 924
29-6 Recent Developments 924
29-7 Conclusion 925
References .. 925

30 Pollination Control: Mechanical and Sterility 931
D. R. Viands, P. Sun, and D. K. Barnes

30-1 Floral Morphology, Tripping, Pollination, and Fertilization 931
30-2 Mechanical Pollination Control 938
30-3 Self-Incompatibility and Self-Sterility 939
30-4 In Vitro Pollen Germination and Pollen-Tube Growth . 945
30-5 Male Sterility 947
30-6 Pollination Control in Hybrid Production in the Field . 950
30-7 Female Sterility 954
30-8 Summary .. 955
References .. 956

31 Seed Physiology, Seedling Performance, and Seed Sprouting 961

31-1 Seed Physiology 962
31-2 Seed Storage 967
31-3 Deterioration 971
31-4 Seed and Seedling Performance 974
31-5 Seed Sprouting 975
References .. 979

32 Seed Production Practices 985
Clarence M. Rincker, V. L. Marble, D. E. Brown, and Carl A. Johansen

32-1 Areas of Seed Production 985
32-2 Stand Establishment 986
32-3 Managing Established Stands 990
32-4 Insect Control 994
32-5 Pollination 1001
32-6 Harvesting 1009
32-7 Combine Harvesting 1011
32-8 Postharvest Cultural Operations 1014
32-9 Seed Yields and Factors Affecting Yield 1014
References .. 1017
CONTENTS

33 The Seed Industry

Donald L. Smith

33-1 Development of the Industry 1023
33-2 Unique Characteristics of the Industry 1026
33-3 Research ... 1026
33-4 Production ... 1029
33-5 Conditioning .. 1030
33-6 Marketing ... 1032
33-7 Product Information 1034
33-8 Trade Organizations 1035
33-9 Summary ... 1035

References .. 1036

34 Future Trends in North America

G. E. Carlson and A. A. Hanson

34-1 Changing Demands for Alfalfa 1037
34-2 Changing Science and Technology 1038
34-3 Changing Institutional Relationships 1043
34-4 Summary ... 1045

References .. 1045

APPENDIX .. 1046
SUBJECT INDEX .. 1055
FOREWORD

This is a remarkable book about a remarkable crop. The book began as a revision of American Society of Agronomy Monograph 15, “Alfalfa Science and Technology”, but expanded into the most comprehensive treatment of the accumulated knowledge on alfalfa \(\textit{Medicago sativa L.}\) currently available.

The subject matter of the book ranges from the most fundamental aspects of alfalfa genetics to practical information on alfalfa management. The authors have extremely diverse backgrounds, perspectives, and areas of expertise. This book will be a valuable research and teaching reference, and it should form the basis upon which to launch new research efforts on alfalfa production and use. Hopefully, it will stimulate expanded effort to exploit the still untapped potential of this important species.

We particularly appreciate the efforts of Dr. A. A. Hanson in managing the final review of the book and the important contributions of others in making this a truly excellent product, one in which the American Society of Agronomy, the Crop Science Society of America, and the Soil Science Society of America can be justly proud. As officers of the tri-societies, we wish to thank W-L Research, Inc., a firm with major involvement in alfalfa research and seed marketing, for permitting A. A. Hanson to edit the monograph as part of his regular employment, and for covering expenses involved in his communication with others.

American Society of Agronomy
Crop Science Society of America
D. R. Keeney, \textit{president}, 1988
Soil Science Society of America
This monograph is a testament to the oldest cultivated forage crop, alfalfa; a crop that has increased in importance over time as a mainstay in the production of livestock products. In many countries, including those in North America, alfalfa is the basic component in feeding programs for dairy cattle, as well as an important feed for beef cattle, horses, sheep, and other classes of livestock. Furthermore, alfalfa enhances the stability of agricultural production systems by improving soil productivity and reducing losses of soil and water.

The importance of alfalfa in world agriculture can be attributed to a number of morphological and physiological characteristics that contribute to its high yield of nutritious herbage, rapid recovery after cutting, longevity, and tolerance to environmental stress. Also, symbiotic N\(_2\) fixation in alfalfa eliminates the need for chemical N, and adds a beneficial carryover effect in crop rotations. In spite of the recognized merits of alfalfa, the crop would not enjoy a competitive advantage in many regions and agricultural zones in the absence of research. Thus, the success of alfalfa production in many countries documents the research efforts of scientists who have adapted germplasm, improved understanding of crop requirements, developed superior cultivars resistant to major pest insects and diseases, advanced seed production technology, and increased efficiency in animal feeding. Recent history suggests that research efforts to maintain and enhance the contribution of alfalfa must be strengthened, in response to new problems and opportunities that will arise with the anticipated trend to more intensive agricultural production systems.

Many major developments have occurred since the publication in 1972 of Monograph 15, *Alfalfa Science and Technology* edited by Clarence H. Hanson. These numerous changes provide the basis for this revision and a new title, *Alfalfa and Alfalfa Improvement*.

Authors exercised judgment in preparing material for inclusion in the revised edition. In some chapters they have included salient information from the previous publication, while in others the authors present a solid inventory of recent achievements with limited reference to older literature. This approach has been effective in providing a comprehensive overview of new and emerging areas of science, together with a balanced assessment of other topics in which new developments have had a modest impact. A significant feature and strength of the new monograph rests on the inclusion of complete citations to the most recent literature. In addition, much new information is presented from such diverse fields as interspecific hybridization, tissue culture and genetic engineering, N\(_2\) fixation, carbon assimilation and partitioning, pest control, crop management, crop utilization, and breeding.

The revision of *Alfalfa Science and Technology* was initiated under the leadership of co-editors D. K. Barnes and R. R. Hill, Jr., who, with an editorial committee consisting of G. H. Heichel, O. J. Hunt, K. T. Leath, G. C. Marten, and M. B. Tesar, identified topics for inclusion and con-
tacted specialists to prepare authoritative chapters for publication. Co­editors and members of the editorial committee were assigned respons­ibility for chapters in their respective areas of expertise. In this capacity they received manuscripts, arranged for peer reviews, and corresponded with authors in the revision of manuscripts. Subsequently, I was asked to finalize the monograph in an effort to expedite publication. Efforts of the editorial committee are recognized by identifying them as associate editors.

As senior editor, I assumed sole responsibility for final editorial clear­ance and submitting all chapters to the Society for publication. Full credit must be given to authors and coauthors who prepared the 34 informative chapters; to my co-editors and associate editors for their efforts in ar­ranging for reviews and revisions; to numerous scientists who reviewed individual chapters; and to the managing editor and Society staff for bringing the monograph to press. Although credit must be assigned as stated, I remain accountable for any oversights and deficiencies that should have been corrected during the final review.

Grateful acknowledgment is extended to my employer, W-L Research, Inc., who provided me with time to edit the monograph as a part of my regular duties, and for covering expenses involved in communicating with authors. My contribution would have been impossible in the absence of support from W-L Research, Inc.

A. A. Hanson, editor
CONTRIBUTORS

D. K. Barnes
Research Geneticist, USDA-ARS, Minnesota Agricultural Experiment Station, St. Paul, Minnesota

R. F. Barnes
Executive Vice President, American Society of Agronomy, Crop Science Society of America, and Soil Science of America, Madison, Wisconsin

L. N. Bass
Director (deceased), National Seed Storage Laboratory, USDA-ARS, Fort Collins, Colorado

Gary R. Bauchan
Research Geneticist, Germplasm Quality and Enhancement Laboratory, USDA-ARS, Beltsville, Maryland

J. E. Baylor
Director of Market Development, Beachley-Hardy Seed Company, Camp Hill, Pennsylvania

R. A. Byers
Research Entomologist, U.S. Regional Pasture Research Laboratory, USDA-ARS, University Park, Pennsylvania

E. T. Bingham
Professor, Department of Agronomy, University of Wisconsin, Madison, Wisconsin

Joe H. Bouton
Associate Professor, Department of Agronomy, University of Georgia, Athens, Georgia

M. A. Brick
Associate Professor, Department of Agronomy, Colorado State University, Fort Collins, Colorado

D. E. Brown
Senior Agronomist, Land O'Lakes, Caldwell, Idaho

D. R. Buxton
Research Plant Physiologist, USDA-ARS, Iowa Agricultural Experiment Station, Ames, Iowa

J. L. Caddel
Professor, Department of Agronomy, Oklahoma State University, Stillwater, Oklahoma

G. E. Carlson
Area Director, Midwest Area, USDA-ARS, Peoria, Illinois

Douglas S. Chamblee
Professor, Department of Crop Science, North Carolina State University, Raleigh, North Carolina

Michael Collins
Associate Professor, Department of Agronomy, University of Kentucky, Lexington, Kentucky

H. R. Conrad
Professor and Associate Director, Ohio State University, Ohio Agricultural Research and Development Center, Wooster, Ohio

H. T. Cralle
Assistant Professor, Department of Soil and Crop Science, Texas A&M University, College Station, Texas

R. H. Delaney
Professor, Plant Science Division, University of Wyoming, Laramie, Wyoming

Stanley H. Duke
Associate Professor, Department of Agronomy, University of Wisconsin, Madison, Wisconsin

J. H. Elgin, Jr.
Research Geneticist, National Program Staff, USDA-ARS, Beltsville, Maryland

Donald E. Erwin
Professor, Department of Plant Pathology, University of California, Riverside, California

G. W. Fick
Professor, Department of Agronomy, Cornell University, Ithaca, New York
CONTRIBUTORS

D. G. Gilchrist
Professor, Department of Plant Pathology, University of California, Davis, California

B. P. Goplen
Head-Forage Section, Agriculture Canada Research Station, Saskatoon, Saskatchewan

Gerald D. Griffin
Research Plant Pathologist, USDA-ARS, Utah Agricultural Experiment Station, Logan, Utah

W. K. Griffith
Eastern Director, Potash and Phosphate Institute, Great Falls, Virginia

C. R. Gunn
Botanist, Systematic Botany, Mycology and Nematology Laboratory, USDA-ARS, Beltsville, Maryland

A. A. Hanson
Vice-President-Research, W-L Research, Highland, Maryland

G. H. Heichel
Plant Physiologist, USDA-ARS, Minnesota Agricultural Experiment Station, St. Paul, Minnesota

O. B. Hesterman
Assistant Professor, Department of Crop and Soil Sciences, Michigan State University, East Lansing, Michigan

R. R. Hill, Jr.
Research Leader, U.S. Regional Pasture Research Laboratory, USDA-ARS, University Park, Pennsylvania

D. A. Holt
Director, Illinois Agricultural Experiment Station, and Associate Dean, College of Agriculture, University of Illinois, Urbana, Illinois

E. K. Horber
Entomologist, Department of Entomology, Kansas State University, Manhattan, Kansas

R. E. Howarth
Senior Research Scientist, Agriculture Canada Research Station, Saskatoon, Saskatchewan

Carl A. Johansen
Entomologist (retired), Department of Entomology, Washington State University, Pullman, Washington

Neal A. Jorgensen
Associate Dean and Director, Wisconsin Agricultural Experiment Station, University of Wisconsin, Madison

M. B. Kirkham
Professor, Evapotranspiration Laboratory, Department of Agronomy, Kansas State University, Manhattan, Kansas

T. Klopfenstein
Professor, Department of Animal Science, University of Nebraska, Lincoln, Nebraska

Richard G. Koegel
Research Agricultural Engineer, Dairy Forage Research Center, USDA-ARS, Madison, Wisconsin

G. D. Lacefield
Professor, University of Kentucky, West Kentucky Research and Education Center, Princeton, Kentucky

Les Lanyon
Associate Professor, Department of Agronomy, Pennsylvania State University, University Park, Pennsylvania

Kenneth T. Leath
Research Plant Pathologist, U.S. Regional Pasture Research Laboratory, USDA-ARS, University Park, Pennsylvania

V. L. Lechtenberg
Associate Director, Indiana Agricultural Experiment Station, Purdue University, West Lafayette, Indiana

W. F. Lehman
Agronomist, Department of Agronomy and Range Science, University of California, El Centro, California

Dean L. Linscott
Lead Scientist, USDA-ARS, Ithaca, New York

D. G. Lugg
Agricultural Consultant, Compton Marsh Farm, Wiltshire, England (formerly New Mexico State University, Las Cruces, New Mexico)
<table>
<thead>
<tr>
<th>Name</th>
<th>Title and Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>George R. Manglitz</td>
<td>Research Entomologist, USDA-ARS, Nebraska Agricultural Experiment Station, Lincoln, Nebraska</td>
</tr>
<tr>
<td>V. L. Marble</td>
<td>Extension Agronomist, Department of Agronomy and Range Science, University of California, Davis, California</td>
</tr>
<tr>
<td>G. C. Marten</td>
<td>Lead Scientist, USDA-ARS, Minnesota Agricultural Experiment Station, St. Paul, Minnesota</td>
</tr>
<tr>
<td>N. P. Martin</td>
<td>Professor of Extension, Department of Agronomy and Genetics, University of Minnesota, St. Paul, Minnesota</td>
</tr>
<tr>
<td>A. G. Matches</td>
<td>Thornton Professor of Plant and Soil Science, Department of Plant and Soil Sciences, Texas Tech. University, Lubbock, Texas</td>
</tr>
<tr>
<td>T. J. McCoy</td>
<td>Assistant Professor, Department of Plant Sciences, University of Arizona, Tucson, Arizona</td>
</tr>
<tr>
<td>James S. McKenzie</td>
<td>Research Scientist, Agriculture Canada Research Station, Beaverlodge, Alberta</td>
</tr>
<tr>
<td>Bill Melton</td>
<td>Professor, Department of Crop and Soil Sciences, New Mexico State University, Las Cruces, New Mexico</td>
</tr>
<tr>
<td>Réal Michaud</td>
<td>Research Scientist, Agriculture Canada Research Station, Ste-Foy, Quebec</td>
</tr>
<tr>
<td>Jim B. Moutray</td>
<td>Forage Research Director, AgriPro, Ames, Iowa</td>
</tr>
<tr>
<td>Roger Paquin</td>
<td>Research Scientist, Agriculture Canada Research Station, Ste-Foy, Quebec</td>
</tr>
<tr>
<td>A. W. Pauli</td>
<td>Agronomist (retired), Deere and Company, East Moline, Illinois</td>
</tr>
<tr>
<td>Elroy J. Peters</td>
<td>Professor, Department of Agronomy, University of Missouri, Columbia, Missouri</td>
</tr>
<tr>
<td>D. A. Phillips</td>
<td>Professor, Department of Agronomy and Range Science, University of California, Davis, California</td>
</tr>
<tr>
<td>Carlos F. Quiros</td>
<td>Assistant Professor, Department of Vegetable Crops, University of California, Davis, California</td>
</tr>
<tr>
<td>Roger H. Ratcliffe</td>
<td>Research Entomologist, Germplasm Quality and Enhancement Laboratory, USDA-ARS, Beltsville, Maryland</td>
</tr>
<tr>
<td>Clarence M. Rincker</td>
<td>Research Agronomist (retired), USDA-ARS, Irrigated Agriculture Research and Extension Center, Prosser, Washington</td>
</tr>
<tr>
<td>E. E. Roos</td>
<td>Plant Physiologist, National Seed Storage Laboratory, USDA-ARS, Ft. Collins, Colorado</td>
</tr>
<tr>
<td>D. E. Rowe</td>
<td>Research Leader, USDA-ARS, Mississippi Agricultural Experiment Station, Starkville, Mississippi</td>
</tr>
<tr>
<td>M. D. Rumbaugh</td>
<td>Research Geneticist, USDA-ARS, Utah Agricultural Experiment Station, Logan, Utah</td>
</tr>
<tr>
<td>C. C. Shaeffer</td>
<td>Professor, Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota</td>
</tr>
<tr>
<td>J. S. Shenk</td>
<td>Professor, Department of Agronomy, Pennsylvania State University, University Park, Pennsylvania</td>
</tr>
<tr>
<td>Donald L. Smith</td>
<td>Plant Breeder and Consultant, 2 Loma Vista Place, Woodland, California</td>
</tr>
<tr>
<td>E. L. Sorensen</td>
<td>Research Agronomist, USDA-ARS, Kansas Agricultural Experiment Station, Manhattan, Kansas</td>
</tr>
</tbody>
</table>
CONTRIBUTORS

Paul Sun
Research Director, Dairyland Research International, Clinton, Wisconsin

C. B. Tanner
Professor, Department of Soil Science, University of Wisconsin, Madison, Wisconsin

M. B. Tesar
Professor, Department of Crop and Soil Sciences, Michigan State University, East Lansing, Michigan

L. R. Teuber
Associate Professor, Department of Agronomy and Range Science, University of California, Davis, California

C. P. Vance
Research Plant Physiologist, USDA-ARS, Minnesota Agricultural Experiment Station, St. Paul, Minnesota

R. W. Van Keuren
Professor, Department of Agronomy, Ohio State University, Ohio Agricultural Research and Development Center, Wooster, Ohio

D. R. Viands
Associate Professor, Department of Plant Breeding and Biometry, Cornell University, Ithaca, New York

K. Walker
Vice-President, Plant Genetics, Davis, California

W. F. Wedin
Professor, Department of Agronomy, Iowa State University, Ames, Iowa

R. E. Welty
Research Plant Pathologist, USDA-ARS, Oregon Agricultural Experiment Station, Corvallis, Oregon
Conversion Factors for SI and non-SI Units

<table>
<thead>
<tr>
<th>SI Unit</th>
<th>Column 1 (length)</th>
<th>Column 2 (non-SI Unit)</th>
<th>To convert Column 1 into Column 2, multiply by</th>
</tr>
</thead>
<tbody>
<tr>
<td>kilometer, km (10³ m)</td>
<td>0.621</td>
<td>mile, mi</td>
<td>1.609</td>
</tr>
<tr>
<td>meter, m</td>
<td>1.094</td>
<td>yard, yd</td>
<td>0.914</td>
</tr>
<tr>
<td>micrometer, µm (10⁻⁶ m)</td>
<td>3.28</td>
<td>foot, ft</td>
<td>0.304</td>
</tr>
<tr>
<td>millimeter, mm (10⁻³ m)</td>
<td>1.0</td>
<td>micron, µ</td>
<td>1.0</td>
</tr>
<tr>
<td>nanometer, nm (10⁻⁹ m)</td>
<td>3.94 X 10⁻²</td>
<td>inch, in</td>
<td>25.4</td>
</tr>
<tr>
<td>hectare, ha</td>
<td>3.94 X 10⁻¹</td>
<td>Angstrom, Å</td>
<td>0.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SI Unit</th>
<th>Column 2 (area)</th>
<th>Column 1 (length)</th>
<th>To convert Column 2 into Column 1, multiply by</th>
</tr>
</thead>
<tbody>
<tr>
<td>acre</td>
<td>2.47</td>
<td>hectare, ha</td>
<td>0.405</td>
</tr>
<tr>
<td>square kilometer, km² (10⁶ m²)</td>
<td>247</td>
<td>acre</td>
<td>4.05 X 10⁻³</td>
</tr>
<tr>
<td>square kilometer, km² (10⁶ m²)</td>
<td>0.386</td>
<td>acre</td>
<td>2.590</td>
</tr>
<tr>
<td>square meter, m²</td>
<td>2.47 X 10⁻⁴</td>
<td>square mile, mi²</td>
<td>4.05 X 10³</td>
</tr>
<tr>
<td>square meter, m²</td>
<td>10.76</td>
<td>square foot, ft²</td>
<td>9.29 X 10⁻²</td>
</tr>
<tr>
<td>square millimeter, mm² (10⁻⁶ m²)</td>
<td>1.55 X 10⁻³</td>
<td>square inch, in²</td>
<td>645</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SI Unit</th>
<th>Column 3 (volume)</th>
<th>Column 2 (area)</th>
<th>To convert Column 3 into Column 2, multiply by</th>
</tr>
</thead>
<tbody>
<tr>
<td>cubic meter, m³</td>
<td>9.73 X 10⁻¹</td>
<td>acre-inch</td>
<td>102.8</td>
</tr>
<tr>
<td>cubic meter, m³</td>
<td>35.3</td>
<td>cubic foot, ft³</td>
<td>2.83 X 10⁻²</td>
</tr>
<tr>
<td>cubic meter, m³</td>
<td>6.10 X 10⁴</td>
<td>cubic inch, in³</td>
<td>1.64 X 10⁻³</td>
</tr>
<tr>
<td>liter, L (10⁻¹ m³)</td>
<td>2.84 X 10⁻²</td>
<td>bushel, bu</td>
<td>35.24</td>
</tr>
<tr>
<td>liter, L (10⁻¹ m³)</td>
<td>1.057</td>
<td>quart (liquid), qt</td>
<td>0.946</td>
</tr>
<tr>
<td>liter, L (10⁻¹ m³)</td>
<td>3.53 X 10⁻²</td>
<td>cubic foot, ft³</td>
<td>28.3</td>
</tr>
<tr>
<td>liter, L (10⁻¹ m³)</td>
<td>0.265</td>
<td>gallon</td>
<td>3.78</td>
</tr>
<tr>
<td>liter, L (10⁻¹ m³)</td>
<td>33.78</td>
<td>ounce (fluid), oz</td>
<td>2.96 X 10⁻²</td>
</tr>
<tr>
<td>liter, L (10⁻¹ m³)</td>
<td>2.11</td>
<td>pint (fluid), pt</td>
<td>0.473</td>
</tr>
</tbody>
</table>

continued on next page
To convert Column 1 into Column 2, multiply by

<table>
<thead>
<tr>
<th>SI Unit</th>
<th>non-SI Unit</th>
<th>To convert Column 2 into Column 1 multiply by</th>
</tr>
</thead>
<tbody>
<tr>
<td>gram, g (10^{-3}) kg</td>
<td>pound, lb</td>
<td>454</td>
</tr>
<tr>
<td>gram, g (10^{-2}) kg</td>
<td>ounce (avdp), oz</td>
<td>28.4</td>
</tr>
<tr>
<td>kilogram, kg</td>
<td>pound, lb</td>
<td>0.454</td>
</tr>
<tr>
<td>kilogram, kg</td>
<td>quintal (metric), q</td>
<td>(10^2)</td>
</tr>
<tr>
<td>kilogram, kg</td>
<td>ton (2000 lb), ton</td>
<td>907</td>
</tr>
<tr>
<td>kilogram, kg</td>
<td>ton (U.S.), ton</td>
<td>0.907</td>
</tr>
<tr>
<td>megagram, Mg (tonne)</td>
<td>ton (U.S.), ton</td>
<td>0.907</td>
</tr>
<tr>
<td>tonne, t</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mass

- \(0.893\) kilogram per hectare, kg ha\(^{-1}\)
- \(7.77 \times 10^{-2}\) kilogram per cubic meter, kg m\(^{-3}\)
- \(1.49 \times 10^{-2}\) kilogram per hectare, kg ha\(^{-1}\)
- \(1.59 \times 10^{-2}\) kilogram per hectare, kg ha\(^{-1}\)
- \(1.86 \times 10^{-2}\) kilogram per hectare, kg ha\(^{-1}\)
- \(0.107\) liter per hectare, L ha\(^{-1}\)
- \(893\) tonnes per hectare, t ha\(^{-1}\)
- \(893\) megagram per hectare, Mg ha\(^{-1}\)
- \(0.446\) megagram per hectare, Mg ha\(^{-1}\)
- \(2.24\) meter per second, m s\(^{-1}\)

Yield and Rate

- \(0.12\) pound per acre, lb acre\(^{-1}\)
- \(12.87\) pound per bushel, lb bu\(^{-1}\)
- \(67.19\) bushel per acre, 60 lb
- \(62.71\) bushel per acre, 56 lb
- \(53.75\) bushel per acre, 48 lb
- \(9.35\) gallon per acre
- \(1.12 \times 10^{-3}\) pound per acre, lb acre\(^{-1}\)
- \(1.12 \times 10^{-3}\) pound per acre, lb acre\(^{-1}\)
- \(2.24\) ton (2000 lb) per acre, ton acre\(^{-1}\)
- \(0.447\) mile per hour

Specific Surface

- \(0.1\) square centimeter per gram, cm\(^2\) g\(^{-1}\)
- \(10^{-3}\) square millimeter per gram, mm\(^2\) g\(^{-1}\)
Pressure

<table>
<thead>
<tr>
<th>Value</th>
<th>Unit Description</th>
<th>Conversion Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.90</td>
<td>megapascal, MPa (10^6 Pa)</td>
<td>0.101</td>
</tr>
<tr>
<td>1.00</td>
<td>megapascal, MPa (10^6 Pa)</td>
<td>0.1</td>
</tr>
<tr>
<td>2.09 × 10^-2</td>
<td>pascal, Pa</td>
<td>1.00</td>
</tr>
<tr>
<td>1.45 × 10^-4</td>
<td>pascal, Pa</td>
<td>47.9</td>
</tr>
<tr>
<td>6.90 × 10^-3</td>
<td>gram per cubic centimeter, g cm^-3</td>
<td>6.90 × 10^3</td>
</tr>
</tbody>
</table>

Temperature

<table>
<thead>
<tr>
<th>Value</th>
<th>Unit Description</th>
<th>Conversion Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00 (K - 273)</td>
<td>Kelvin, K (9/5 °C + 32) Celsius, °C</td>
<td>1.00 (°C + 273)</td>
</tr>
<tr>
<td>5/9 (°F - 32)</td>
<td>Fahrenheit, °F</td>
<td>5/9 (°F - 32)</td>
</tr>
</tbody>
</table>

Energy, Work, Quantity of Heat

<table>
<thead>
<tr>
<th>Value</th>
<th>Unit Description</th>
<th>Conversion Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.52 × 10^-4</td>
<td>joule, J</td>
<td>1.05 × 10^3</td>
</tr>
<tr>
<td>0.239</td>
<td>joule, J</td>
<td>4.19</td>
</tr>
<tr>
<td>10^-7</td>
<td>erg</td>
<td>1.36</td>
</tr>
<tr>
<td>2.387 × 10^-3</td>
<td>joule per square meter, J m^-2</td>
<td>4.19 × 10^4</td>
</tr>
<tr>
<td>10^-5</td>
<td>foot-pound</td>
<td>698</td>
</tr>
<tr>
<td>10^-2</td>
<td>dyne</td>
<td></td>
</tr>
</tbody>
</table>

Transpiration and Photosynthesis

<table>
<thead>
<tr>
<th>Value</th>
<th>Unit Description</th>
<th>Conversion Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.60 × 10^-2</td>
<td>milligram per square meter second, mg m^-2 s^-1</td>
<td>27.8</td>
</tr>
<tr>
<td>5.56 × 10^-3</td>
<td>milligram (H2O) per square meter second, mg m^-2 s^-1</td>
<td>180</td>
</tr>
<tr>
<td>10^-4</td>
<td>milligram per square meter second, mg m^-2 s^-1</td>
<td>10^4</td>
</tr>
<tr>
<td>35.97</td>
<td>milligram per square meter second, mg m^-2 s^-1</td>
<td>2.78 × 10^-2</td>
</tr>
</tbody>
</table>

Plane Angle

<table>
<thead>
<tr>
<th>Value</th>
<th>Unit Description</th>
<th>Conversion Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>57.3</td>
<td>radian, rad</td>
<td>1.75 × 10^-2</td>
</tr>
</tbody>
</table>
Conversion Factors for SI and non-SI Units

<table>
<thead>
<tr>
<th>SI Unit</th>
<th>Non-SI Unit</th>
<th>To convert Column 1 into Column 2 multiply by</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Electrical Conductivity

- 10 siemen per meter, S m^{-1} = millimho per centimeter, mmho cm^{-1} = 0.1

Water Measurement

- 9.73 × 10^{-3} cubic meter, m^3
- 9.81 × 10^{-3} cubic meter per hour, m^3 h^{-1}
- 4.40 cubic meter per hour, m^3 h^{-1}
- 8.1 hectare-meters, ha-m
- 97.28 hectare-meters, ha-m
- 8.1 × 10^{-2} hectare-centimeters, ha-cm

- acre-inches, acre-in = 102.8
- cubic feet per second, ft^3 s^{-1} = 101.9
- U.S. gallons per minute, gal min^{-1} = 0.227
- acre-feet, acre-ft = 0.123
- acre-inches, acre-in = 1.03 × 10^{-2}
- acre-feet, acre-ft = 12.33

Concentrations

- 1 centimole per kilogram, cmol kg^{-1} (ion exchange capacity) = milliequivalents per 100 grams, meq = 1
- 0.1 gram per kilogram, g kg^{-1} = percent, %
- 1 milligram per kilogram, mg kg^{-1} = parts per million, ppm = 1

Radioactivity

- 2.7 × 10^{-11} bequerel, Bq = curie, Ci = 3.7 × 10^{10}
- 2.7 × 10^{-2} bequerel per kilogram, Bq kg^{-1} = picocurie per gram, pCi g^{-1} = 37
- 100 gray, Gy (absorbed dose) = rad, rd = 0.01
- 100 sievert, Sv (equivalent dose) = rem (roentgen equivalent man) = 0.01

Plant Nutrient Conversion

<table>
<thead>
<tr>
<th>Elemental</th>
<th>Oxide</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>P_2O_5</td>
<td>0.437</td>
</tr>
<tr>
<td>K</td>
<td>K_2O</td>
<td>0.830</td>
</tr>
<tr>
<td>Ca</td>
<td>CaO</td>
<td>0.715</td>
</tr>
<tr>
<td>Mg</td>
<td>MgO</td>
<td>0.602</td>
</tr>
</tbody>
</table>