COTTON
AGRONY

A Series of Monographs

The American Society of Agronomy and Academic Press published the first six books in this series. The General Editor of Monographs 1 to 6 was A. G. Norman. They are available through Academic Press, Inc., 111 Fifth Avenue, New York, NY 10003.

1. C. EDMUND MARSHALL: The Colloid Chemical of the Silicate Minerals, 1949
2. BYRON T. SHAW, Editor: Soil Physical Conditions and Plant Growth, 1952
3. K. D. JACOB: Fertilizer Technology and Resources in the United States, 1953
5. GEORGE F. SPRAGUE, Editor: Corn and Corn Improvement, 1955
6. J. LEVITT: The Hardiness of Plants, 1956

The Monographs published since 1957 are available from the American Society of Agronomy, 677 S. Segoe Road, Madison, WI 53711.

7. JAMES N. LUTHIN, Editor: Drainage of Agricultural Lands, 1957
8. FRANKLIN A. COFFMAN, Editor: Oats and Oat Improvement
 Part 1—Physical and Mineralogical Properties, Including Statistics of Measurement and Sampling
 A. L. PAGE, Editor: Methods of Soil Analysis, 1982
 Part 2—Chemical and Microbiological Properties, Second Edition
 (Out of print; replaced by no. 22)
15. CLARENCE H. HANSON, Editor: Alfalfa Science and Technology, 1972
16. B. E. CALDWELL, Editor: Soybeans: Improvement, Production, and Use, 1973
17. JAN VAN SCHILFGAARDE, Editor: Drainage for Agriculture, 1974
18. GEORGE F. SPRAGUE, Editor: Corn and Corn Improvement, 1977
19. JACK F. CARTER, Editor: Sunflower Science and Technology, 1978
20. ROBERT C. BUCKNER and L. P. BUSH, Editors: Tall Fescue, 1979
22. F. J. STEVENSON, Editor: Nitrogen in Agricultural Soils, 1982
Cotton in full bloom (top) and mechanical picking of cotton (bottom).
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOREWORD</td>
<td></td>
<td>xi</td>
</tr>
<tr>
<td>PREFACE</td>
<td></td>
<td>xii</td>
</tr>
<tr>
<td>CONTRIBUTORS</td>
<td></td>
<td>xiii</td>
</tr>
<tr>
<td>1 Cotton as a World Crop</td>
<td>JOSHUA A. LEE</td>
<td></td>
</tr>
<tr>
<td>1-1 The Origins of Cotton</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>1-2 The Advance of Cotton in World Trade and Manufactories</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>1-3 Cotton into Modern Times—The Second White Revolution</td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>2 Taxonomy and Germplasm Resources</td>
<td>PAUL A. FRYXELL</td>
<td>27</td>
</tr>
<tr>
<td>2-1 Taxonomy of Gossypium</td>
<td></td>
<td>48</td>
</tr>
<tr>
<td>2-2 Germplasm Resources</td>
<td></td>
<td>56</td>
</tr>
<tr>
<td>2-3 The Importance of Voucher Specimens and Herbarium Documentation</td>
<td></td>
<td>56</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>56</td>
</tr>
<tr>
<td>3 Anatomy and Morphology of Cultivated Cottons</td>
<td>JACK R. MAUNEY</td>
<td></td>
</tr>
<tr>
<td>3-1 Development of Primary Axis</td>
<td></td>
<td>59</td>
</tr>
<tr>
<td>3-2 Roots</td>
<td></td>
<td>62</td>
</tr>
<tr>
<td>3-3 Aerial Organs</td>
<td></td>
<td>62</td>
</tr>
<tr>
<td>3-4 Flower, Fruit, and Seed</td>
<td></td>
<td>74</td>
</tr>
<tr>
<td>3-5 Summary</td>
<td></td>
<td>79</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>79</td>
</tr>
<tr>
<td>4 Qualitative Genetics, Cytology, and Cytogenetics</td>
<td>J. E. ENDRIZZI, E. L. TURCOTTE, AND R. J. KOHEL</td>
<td></td>
</tr>
<tr>
<td>4-1 Genetic Mutants and Gene Symbols</td>
<td></td>
<td>82</td>
</tr>
<tr>
<td>4-2 Linkages</td>
<td></td>
<td>97</td>
</tr>
<tr>
<td>4-3 Genetic Mutant Stocks</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>4-4 Utilization of Genetic Mutants</td>
<td></td>
<td>101</td>
</tr>
<tr>
<td>4-5 Genome Differentiation and Identification</td>
<td></td>
<td>102</td>
</tr>
<tr>
<td>4-6 Origin of the Allotetraploids</td>
<td></td>
<td>105</td>
</tr>
<tr>
<td>4-7 Time and Place of the Origin of the Allotetraploids</td>
<td></td>
<td>107</td>
</tr>
<tr>
<td>4-8 Mono- vs. Poly-phyletic Origin of the Allotetraploids</td>
<td></td>
<td>108</td>
</tr>
<tr>
<td>4-9 New Evidence for the Origin of the Allotetraploids</td>
<td></td>
<td>110</td>
</tr>
</tbody>
</table>
4-10 Translocations .. 113
4-11 Monosomes .. 116
4-12 Monotelodisomes and Their Use 118
4-13 Monoisodisomes .. 119
4-14 Trisomes and Alien Chromosome Additions 119
References .. 119

5 Quantitative Genetics

WILLIAM R. MEREDITH, JR.

5-1 Basic Quantitative Inheritance Analyses 132
5-2 Genotype × Environment Interactions 138
5-3 Genetic Association of Traits .. 141
5-4 Heritability and Selection Progress 145
5-5 Summary .. 147
References .. 147

6 Physiology

C. R. BENEDICT

6-1 Seedling Growth .. 151
6-2 Root Physiology .. 155
6-3 Flowering ... 157
6-4 Photosynthesis .. 167
6-5 Water Relations ... 179
6-6 Fiber Development .. 182
6-7 Ovule and Embryo Culture .. 186
6-8 Harvest-Aid Chemicals .. 189
References .. 192

7 Breeding

G. A. NILES AND C. V. FEASTER

7-1 Areas of Cultivation in the World 202
7-2 Areas of Cultivation in the USA 203
7-3 Breeding Accomplishments and Cultivar Shifts in the USA .. 205
7-4 Breeding Approaches ... 216
7-5 Applied Breeding ... 224
7-6 Developmental Breeding .. 225
7-7 Cultivar Maintenance ... 227
References .. 229

8 Crop Growing Practices

B. A. WADDLE

8-1 Climatic Ranges Acceptable for Cotton 234
8-2 Soils Acceptable for Cotton ... 236
8-3 Soil Organic Matter ... 239
8-4 Soil Chemistry and Management 243
8-5 Moisture Availability and Control 246
8-6 Production Systems .. 254
8-7 Crop Development Schedules 258
References .. 261
9 Cotton Protection Practices in the USA and World

R. L. RIDGWAY, A. A. BELL, J. A. VEECH, AND J. M. CHANDLER

Section A: Insects

9A-1 Importance of Cotton Insects .. 266
9A-2 Development of Cotton Protection Programs 269
9A-3 Future Prospects .. 283
References ... 283

Section B: Diseases

9B-1 Symptoms and Epidemiology of Diseases 289
9B-2 Control Strategies ... 299
9B-3 Future Perspectives and Research Needs 305
References ... 306

Section C: Nematodes

9C-1 Nematodes Parasitic on Cotton 311
9C-2 Control Practices .. 320
References ... 326

Section D: Weed Control

9D-1 Economically Important Weed Species Infesting United States Cotton ... 331
9D-2 Weed Interference in Cotton ... 333
9D-3 Cotton Losses Due to Weeds ... 335
9D-4 Weeds as Hosts for Pests .. 338
9D-5 Methods of Controlling Weeds in Cotton 342
9D-6 Equipment for Weed Control in Cotton 357
9D-7 Economics of Weed Control Systems in Cotton 359
References ... 361

10 Harvesting

REX F. COLWICK, WILLIAM F. LALOR, AND LAMBERT H. WILKES

10-1 Machines .. 368
10-2 Culture and Management Practices Affecting Mechanical Practices .. 370
10-3 Pre-Harvest Preparation and Timing of Harvest 378
10-4 Care and Operation of Machines 384
10-5 Handling of Seed Cotton ... 385
10-6 Harvesting and Quality .. 390
References ... 392

11 Ginning

ROY V. BAKER AND A. CLYDE GRIFFIN, JR.

11-1 Historical Background .. 397
11-2 Handling Seed Cotton .. 401
11-1 Moisture Conditioning .. 405
11-4 Seed-Cotton Cleaning .. 410
11-5 Gin Stands
11-6 Lint Cleaning
11-7 Handling and Packaging of Lint
11-8 Waste Handling and Collection Systems
11-9 Modern Ginning Systems
References

12 Fiber
HENRY H. PERKINS, JR., DON E. ETHRIDGE, AND CHARLES K. BRAGG
12-1 Cotton Classification
12-2 Physical Properties and Instrument Measurements
12-3 High Volume Instruments
12-4 Marketing Channels and Pricing Mechanisms
12-5 Yarn Manufacturing
12-6 Fabric Manufacturing
12-7 Finishing
12-8 Cotton and Synthetic Fiber Blends
12-9 Cotton Dust and Byssinosis
12-10 Utilization
References

13 Seed
JOHN P. CHERRY AND HARRY R. LEFFLER
13-1 Composition
13-2 Seed Development
13-3 Postmaturation and Preharvest
13-4 Harvest and Postharvest
13-5 Processing
13-6 Utilization
13-7 Nutrition
13-8 Conclusions
References

14 Marketing and Economics
ARLIE L. BOWLING
14-1 World Trade in Cotton
14-2 World Cotton Consumption
14-3 World Cotton Production
14-4 The U.S. Raw Cotton Export Market
14-5 The U.S. Domestic Market
14-6 Domestic Cotton Production
14-7 Government Policies on Cotton
References

Subject Index
FOREWORD

Cotton is a unique crop species that has been a participant in many epics of history. It is one of only a few species that were domesticated in both the Old and New Worlds. Cotton was central to the success of the industrial revolution in Northern Europe, and it was a major thread that wove through the development of colonial empires. Cotton played a major role in the U.S. Civil War and in the economic recovery of the South after the war.

Cotton also has participated in the development of several technologies. The saw gin, which separates lint from seeds, permitted cotton to become a fiber for the masses. Competition from man-made synthetic fibers resulted in the development of processing technology that made cotton into a "wash-and-wear" fabric. Also, the myriad of insect pests and diseases that attack cotton spawned "Integrated Pest Management," a technology for the combined use of biological, mechanical, and chemical agents of control.

In plant research, cotton has shared in the establishment of many principles. Cytogenetic studies on cotton have prompted similar research on other species and provided the knowledge needed for the introgression of genes from ancestral and sister species. The elucidation of the nature of insect tolerance in cotton has led to new techniques in resistance breeding of crop species.

Yes, cotton is unique—it has survived history, been central to development of technologies, and played key roles in plant research. In the monograph, all aspects of cotton are discussed. The taxonomy, morphology, and physiology of this species are major topics of discussion; its genetics and the breeding of superior cultivars are treated thoroughly; growing and harvesting the crop are subjects examined; and the techniques of processing cotton and the crop’s impact on world trade are presented.

The American Society of Agronomy, the Crop Science Society of America, and the Soil Science Society of America are pleased to be the sponsors and publishers of the Cotton monograph. This compendium of the literature on cotton will provide a knowledge base for scientists who work in agronomic, crop, and soils research. It is a scholarly treatise from which new insights in plant research will occur, and a knowledge platform from which new cotton research and technologies will grow.

Kenneth J. Frey, President
American Society of Agronomy

Wayne F. Keim, President
Crop Science Society of America

Donald R. Nielsen, President
Soil Science Society of America
PREFACE

Cotton is at once a fiber, food, and feed crop. The cotton plant is a warm-season woody perennial shrub that is grown as an annual field crop. Worldwide, over 30 million ha of cotton are grown between 47° N and 32° S Lat with over 50% of the production above 30° N Lat. From these crop plants comes cotton lint, an industrial raw material. Thus a renewable agricultural resource enters into competition with synthetic fibers in the textile industry. These crop plants produce not only lint but also the world's second most important oilseed.

Cotton has played a great role in the economy and politics of the world. Today the increased trade in grains and competition from synthetic fibers has reduced cotton's relative importance, but its world consumption continues to grow. Cotton will continue to be a significant commodity in future world trade.

The editorial committee met and enthusiastically developed a comprehensive subject matter outline and limited the monograph to a single volume treating the major subject matter areas.

The monograph starts with the history of cotton. Succeeding chapters treat the biology of the plant and the production of the crop. The remaining chapters are concerned with the industrial utilization of fiber and seed and the economics of cotton. The intent was to produce a timely monograph that would serve to introduce the world of cotton to those unfamiliar with the complexity of this agricultural-industrial commodity and to provide a technical reference for cotton specialists.

The Editors wish to thank the editorial committee for their assistance and contributions and to especially thank the authors for their dedicated efforts that produced the substance of this endeavor.

R. J. Kohel
C. F. Lewis
Editors
CONTRIBUTORS

Roy V. Baker
Research Leader, South Plains Ginning Research Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Lubbock, Texas

Alois A. Bell
Research Leader, Agricultural Research Service, U.S. Department of Agriculture, Texas A&M University, College Station, Texas

C. R. Benedict
Professor, Department of Plant Sciences, Texas A&M University, College Station, Texas

Arlie L. Bowling
Director of Cotton Foundations and Senior Economist, National Cotton Council of America, Memphis, Tennessee

Charles K. Bragg
Research Textile Technologist, Cotton Quality Research Station, Agricultural Research Service, U.S. Department of Agriculture, Clemson, South Carolina

J. M. Chandler
Associate Professor, Department of Soil and Crop Sciences, Texas A&M University, and Texas Agricultural Experiment Station, College Station, Texas

John P. Cherry
Associate Director, Eastern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Philadelphia, Pennsylvania

Rex F. Colwick
Agricultural Engineer, Agricultural Research Service, U.S. Department of Agriculture, and Mississippi State University, Mississippi State, Mississippi (now retired)

J. E. Endrizzi
Professor, Plant Science Department, University of Arizona, Tucson, Arizona

Don E. Ethridge
Agricultural Economist, Department of Agricultural Economics, Texas Tech University, Lubbock, Texas

C. V. Feaster
Research Agronomist, Cotton Research Center, Agricultural Research Service, U.S. Department of Agriculture, Phoenix, Arizona

Paul A. Fryxell
Research Botanist, Agricultural Research Service, U.S. Department of Agriculture, and Texas A&M University, College Station, Texas

A. Clyde Griffin, Jr.
Laboratory Director, U.S. Cotton Ginning Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Stoneville, Mississippi

R. J. Kohel
Research Geneticist, Agricultural Research Service, U.S. Department of Agriculture, and Texas A&M University, College Station, Texas
<table>
<thead>
<tr>
<th>Name</th>
<th>Position and Affiliations</th>
</tr>
</thead>
<tbody>
<tr>
<td>William F. Lalor</td>
<td>Director of Processing Research, Cotton Incorporated, Raleigh, North Carolina</td>
</tr>
<tr>
<td>Joshua A. Lee</td>
<td>Geneticist, Agricultural Research Service, U.S. Department of Agriculture, and Department of Crop Science, North Carolina State University, Raleigh, North Carolina</td>
</tr>
<tr>
<td>Harry R. Leffler</td>
<td>Plant Physiologist, Cotton Physiology and Genetics Research, Delta States Research Center, Agricultural Research Service, U.S. Department of Agriculture, Stoneville, Mississippi</td>
</tr>
<tr>
<td>William R. Meredith, Jr.</td>
<td>Research Geneticist, Cotton Physiology and Genetics, Delta States Research Center, Agricultural Research Service, U.S. Department of Agriculture, Stoneville, Mississippi</td>
</tr>
<tr>
<td>G. A. Niles</td>
<td>Professor, Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas</td>
</tr>
<tr>
<td>R. L. Ridgway</td>
<td>Laboratory Chief, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, Maryland</td>
</tr>
<tr>
<td>Joseph A. Veech</td>
<td>Research Plant Physiologist/Hematologist, Agricultural Research Service, U.S. Department of Agriculture, and Texas A&M University, College Station, Texas</td>
</tr>
<tr>
<td>B. A. Waddle</td>
<td>Altheimer Professor, Department of Agronomy, University of Arkansas, Fayetteville, Arkansas</td>
</tr>
<tr>
<td>Lambert H. Wilkes</td>
<td>Professor, Department of Agricultural Engineering, Texas A&M University, College Station, Texas</td>
</tr>
</tbody>
</table>