IRRIGATION OF AGRICULTURAL LANDS
AGRONOMY
A Series of Monographs Published by the
AMERICAN SOCIETY OF AGRONOMY

General Editor, Monographs 1 to 6, A. G. Norman

1 C. EDMUND MARSHALL: The Colloid Chemistry of the Silicate Minerals, 1949
2 BYRON T. SHAW, Editor: Soil Physical Conditions and Plant Growth, 1952
3 K. D. JACOB, Editor: Fertilizer Technology and Resources in the United States, 1953
4 W. H. PIERRE and A. G. NORMAN, Editors: Soil and Fertilizer Phosphate in Crop Nutrition, 1953
5 GEORGE F. SPRAGUE, Editor: Corn and Corn Improvement, 1955
6 J. LEVITT: The Hardiness of Plants, 1956
7 JAMES N. LUTHIN, Editor: Drainage of Agricultural Lands, 1957

General Editor, D. E. GREGG

8 FRANKLIN A. COFFMAN, Editor: Oats and Oat Improvement, 1961
Managing Editor, H. L. HAMILTON

9 C. A. BLACK, Editor-in-Chief, and D. D. EVANS, J. L. WHITE, L. E. ENSMINGER, and F. E. CLARK, Associate Editors: Methods of Soil Analysis, 1965
Managing Editor, R. C. DINAUER

Part 1—Physical and Mineralogical Properties, Including Statistics of Measurement and Sampling
Part 2—Chemical and Microbiological Properties

10 W. V. BARTHOLOMEW and F. E. CLARK, Editors: Soil Nitrogen, 1965
Managing Editor, H. L. HAMILTON

Managing Editor, R. C. DINAUER

12 R. W. PEARSON and Fred ADAMS, Editors: Soil Acidity and Liming, 1967
Managing Editor, R. C. DINAUER

Managing Editor, H. L. HAMILTON

Monographs 1 through 6, published by Academic Press, Inc., should be ordered from:
Academic Press, Inc., 111 Fifth Avenue, New York, New York 10003

Monographs 7 through 13, published by the American Society of Agronomy, should be ordered from: American Society of Agronomy, 677 South Segoe Road, Madison, Wisconsin, USA 53711
IRRIGATION OF
AGRICULTURAL LANDS

Edited by

ROBERT M. HAGAN
Professor of Water Science, Department of Water Science and Engineering, University of California, Davis, California

HOWARD R. HAISE
Research Soil Scientist, Soil and Water Conservation Research Division Agricultural Research Service, US Department of Agriculture Fort Collins, Colorado

TALCOTT W. EDMINSTER
Associate Director, Soil and Water Conservation Research Division Agricultural Research Service, US Department of Agriculture Beltsville, Maryland

Managing Editor: R. C. DINAUER

Number 11 in the series
AGRONOMY

American Society of Agronomy, Publisher
Madison, Wisconsin, USA
1967
GENERAL FOREWORD

AGRONYOMY—An ASA Monograph Series

Several years ago members of the American Society of Agronomy realized the need for comprehensive treatments of specific subject-matter areas in agronomy. A series of monographs entitled “Agronomy” resulted and the first number was published in 1949. The Academic Press, Inc., of New York was the first publisher of the monographs, since the society, a nonprofit organization with no cash reserve, was not initially able to finance the project. In fact, the first six volumes of the series, which were edited by Dr. A. C. Norman, were published by Academic Press, Inc., the source from which they are available today.

During the period 1949–1957 the American Society of Agronomy developed considerably. By 1957 the society operated a headquarters office in Madison, Wisconsin, with a competent editorial staff. Its financial position had improved to the extent that it was able to pursue the monograph project independently, including complete financing and publishing of the series. In recent years this activity of the society has flourished.

Irrigation of Agricultural Lands is the 11th monograph of the Agronomy series. It comes at a time when the science and application of irrigation practices are crucial factors in areas where a delicate balance exists between the supplies of food and fiber and the demands of an exploding population. The subject of irrigation has attracted international attention for many years although scientists of different nations have not always agreed on its underlying principles. The scope of this monograph and the geographical distribution of the authors affirm its importance in serving the needs of scientists throughout the world. The American Society of Agronomy proudly presents this publication for the benefit of mankind.

The eighth number in the series was Drainage of Agricultural Lands. Already a supplement to this monograph is in preparation because of recent advances made in the subject and the heavy demand for current information. This publication on irrigation is a timely supplement to the overall subject of water for agriculture.

Two additional Agronomy monographs will be appearing in 1967. Number 12 will be entitled Soil Acidity and Liming and number 13 will be entitled Wheat and Wheat Improvement. Since soil acidity and liming are important problems affecting crop production in most, if not all, of the world’s agricultural nations and since wheat is undoubtedly one of the most important world grain crops, it is felt that these two publications will find wide application and will be of significant educational value.

In 1965, Agronomy monograph 9 on Methods of Soil Analysis was printed in two parts: “Part I—Physical and Mineralogical Properties, Including Statistics of Measurement and Sampling” and “Part II—Chemical and Biological Properties.” Monograph 10, Soil Nitrogen also appeared in late 1965 with a comprehensive treatment of the role of this all important plant nutrient in the soil environment. It might be added that monograph 7, the first published by the American Society of Agronomy, was on the subject of Oats and Oat Improvement. Copies of all volumes of the Agronomy monographs beginning with No. 7 through No. 13 may be obtained from the American Society of Agronomy, 677 South Segoe Road, Madison, Wisconsin, 53711.
The fact that the Agronomy monograph series consists of titles primarily in the areas of soil science and crop science should come as no surprise. Members of the American Society of Agronomy are for the most part also members of the Crop Science Society of America and the Soil Science Society of America. The latter societies are outgrowths of the American Society of Agronomy and, in spite of their autonomy and completely separate professional identities, are still closely associated with the founding society. This tri-society association has made it possible for ASA, CSSA, and SSSA to work harmoniously together, to share headquarters office and staff in Madison, and to publish material such as is found in this monograph series in the furtherance of their many mutual professional and scientific objectives.

January, 1967

Matthias Stelly
Executive Secretary-Treasurer
AMERICAN SOCIETY OF AGRONOMY
CROP SCIENCE SOCIETY OF AMERICA
SOIL SCIENCE SOCIETY OF AMERICA
FOREWORD

The application of water to agricultural lands for the purpose of irrigation is one of the alternate uses of this natural resource in many areas. It is essential that water be used effectively and efficiently, whether the supply is limited or excessive.

The practice of irrigation has sometimes been considered to be more of an art than a science. However, present knowledge as revealed in this monograph tends to belie this concept. Brought together in one comprehensive volume by authorities in many professional fields are the principles that form the basis of scientific irrigation—from development of water to its use and reuse. Because of the breadth of material covered and the depth in which it is reviewed, this publication by the American Society of Agronomy will be valuable to all those involved with irrigation, whether in teaching or research, development or practice, or decision making.

The need for a unified reference book for the encouragement and improvement of academic courses in irrigation has been urgent. For despite the growing recognition of its importance, irrigation is now being taught in relatively few institutions and the scope of existing courses varies widely. Where irrigation is taught from the engineering viewpoint, the soil, plant, and agricultural aspects of the subject may not receive sufficient emphasis. Where instruction is given from the viewpoint of the crop and soil scientist, little attention may be given to the engineering aspects of irrigation. This monograph covers the subject from a variety of viewpoints so that it should be useful to instructors and students in all disciplines concerned.

Irrigation of Agricultural Lands should increase the utilization of knowledge now widely scattered in many publications and stimulate new research. It should bring about increased awareness of the information available from other disciplines. It should promote effective cooperation between engineers, soil and crop scientists, and other professional groups whose combined efforts are needed to attain an abundant and permanently successful irrigation agriculture.

The officers and members of the American Society of Agronomy wish to acknowledge the tremendous effort and time expended by the editors, contributing authors, and all others concerned with the preparation of this monograph.

January 1967

ROBERT S. WHITNEY, President
American Society of Agronomy
Economic and social development depends upon the achievement of increased agricultural production. This often requires the opening of additional lands to agriculture through new irrigation projects or the improvement of existing irrigation systems and practices to ensure efficient water use and continued productivity. A recent report of the Food and Agriculture Organization of the United Nations suggests that: "... improved water management (including irrigation and drainage practices) can probably do more towards increasing food supplies and agricultural income in the irrigated areas of the world than any other agricultural practice." Science and technology in soils, water, plants, and engineering are now sufficiently advanced, if properly implemented, to transform irrigation from an age-old art into a modern science.

Irrigation needs and practices necessarily vary widely. This greatly complicates the planning of new irrigation projects or the operation of existing irrigation systems and irrigated farms. Yet one important benefit of science is the ability to predict what results can be expected in given situations. To make such predictions for situations related to irrigation, the skillful combination of knowledge in such professional fields as climatology, geology, ecology, crop science, soil science, water science and engineering, economics, and other social sciences is essential. The lack of a unifying reference work related to irrigation has made it difficult to locate and utilize the best available knowledge from these many disciplines. There is also an urgent need for a unifying reference work to encourage and improve the teaching of irrigation. Few institutions now offer instruction covering all aspects of irrigation.

Irrigation of Agricultural Lands is designed to provide a comprehensive treatment of the broad field of irrigation. So that the monograph would represent a synthesis of concepts and experiences from many sections of the world, author teams for most chapters were deliberately selected to represent widely separated geographic areas and points of view. Although this monograph emphasizes soil and plant factors involved in planning and operating an irrigation enterprise, chapters are included that summarize knowledge of other factors requiring consideration. The discussion of economics is limited to certain economic principles because their application will vary so greatly among the countries of the world. For similar reasons, legal aspects of irrigation projects have been omitted. Construction details for irrigation works are not included because of the great variety of methods and materials used and the availability of engineering publications, some of which are referenced in this monograph.

This monograph is a comprehensive reference volume which summarizes basic theories, outlines principles, and illustrates applications in practice, and is not a handbook or "how-to-do-it" manual. In some of the 62 chapters, detailed, highly theoretical discussions are presented; in others, theories and principles are illustrated by summarizing irrigation practices found useful in a variety of situations. Such information is of value to both water supply organizations and agriculturalists in the planning, design, and operation of irrigation projects. Detailed bibliographies at the end of each chapter.
provide references for specialists in each field. This monograph should be useful in any part of the world regardless of the local climate, water supply, soils, and crops.

Although *Irrigation of Agricultural Lands* is published by the American Society of Agronomy, its preparation has involved generous contributions by members of the American Society of Agricultural Engineers, American Society of Civil Engineers, American Society of Plant Physiologists, and several other professional societies. The Editors wish to express their most sincere appreciation to the authors, to the numerous reviewers, and to the officers and staff of the American Society of Agronomy for their contributions, patience, and understanding over the many years involved in completing this monograph.

January, 1967

Robert M. Hagan
Howard R. Haase
Talcott W. Edminster
CONTRIBUTORS

Duwayne M. Anderson Soil Physicist, US Army Cold Regions Research and Engineering Laboratory, Hanover, New Hampshire

David E. Angus Senior Research Scientist, Division of Meteorological Physics, Commonwealth Scientific and Industrial Research Organization, Victoria, Australia

Orlin Biddulph Professor of Botany, Department of Botany, Washington State University, Pullman, Washington

James W. Biggar Associate Irrigationist, Department of Water Science and Engineering, University of California, Davis, California

A. Alvin Bishop Head, Department of Agricultural and Irrigation Engineering, Utah State University, Logan, Utah

Milton L. Blanc Research Climatologist and Field Research Coordinator, Environmental Data Service, Environmental Science Services Administration, US Department of Commerce, Tempe, Arizona

Gerard H. Bolt Professor of Soil Physics and Chemistry, State Agricultural University, Wageningen, Netherlands

Robert H. Burgy Professor of Water Science and Civil Engineering, Department of Water Science and Engineering, University of California, Davis, California

Robert B. Campbell Soil Scientist (Physics), Coastal Plains Soil and Water Conservation Research Center, Agricultural Research Service, US Department of Agriculture, Florence, South Carolina (formerly Agronomist, Hawaiian Sugar Planters' Association, Honolulu, Hawaii)

Carl W. Carlson Assistant Director, Soil Management Investigations, Soil and Water Conservation Research Division, Agricultural Research Service, US Department of Agriculture, Beltsville, Maryland

John R. Carreker Research Investigations Leader, Soil and Water Conservation Research Division, Agricultural Research Service, US Department of Agriculture, Athens, Georgia

Jerald E. Christiansen Professor of Civil and Irrigation Engineering, Water Research Laboratory, College of Engineering, Utah State University, Logan, Utah
Francis E. Clark Chief Microbiologist, Soil and Water Conservation Research Division, Agricultural Research Service, US Department of Agriculture, Fort Collins, Colorado

Arthur T. Corey Professor of Agricultural Engineering, Department of Water Science and Engineering, Colorado State University, Fort Collins, Colorado

Wayne D. Criddle Consulting Engineer, Clyde-Criddle-Woodward, Inc., Salt Lake City, Utah

Herbert B. Currier Professor of Botany and Botanist in the Experiment Station, Department of Botany, University of California, Davis, California

Robert E. Danielson Professor of Agronomy, Department of Agronomy, Colorado State University, Fort Collins, Colorado

John R. Davis Dean, College of Engineering and Architecture, University of Nebraska, Lincoln, Nebraska

Paul R. Day Professor of Soil Physics and Chairman, Department of Soils and Plant Nutrition, University of California, Berkeley, California

William W. Donnan Branch Chief, Southwest Branch, Soil and Water Conservation Research Division, Agricultural Research Service, US Department of Agriculture, Riverside, California

Paul C. Ekern, Jr. Hydrologist and Professor of Soils, Water Resources Research Center, University of Hawaii, Honolulu, Hawaii

Dwight C. Finfrock Agronomist, The Rockefeller Foundation, Bangkok, Thailand

Milton Fireman Soil and Water Specialist, Tipton and Kalmbach, Inc., Denver, Colorado

Joel E. Fletcher Professor of Hydrology, Civil and Irrigation Engineering, Utah Water Research Laboratory, Utah State University, Logan, Utah

W. J. Flocker Associate Olericulturist, Department of Vegetable Crops, University of California, Davis, California

David M. Gates Director, Missouri Botanical Garden and Professor of Botany, Department of Botany, Washington University, St. Louis, Missouri (formerly, Professor of Natural History, Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado)

Lewis O. Grant Associate Professor of Atmospheric Science, Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Niranjan D. Gulhati Formerly Secretary, Ministry of Irrigation and Power, Government of India, and Past-president International Commission of Irrigation and Drainage, New Delhi, India
CONTRIBUTORS

Robert M. Hagan Professor of Water Science (Irrigation) and Irrigationist in the Agricultural Experiment Station, Department of Water Science and Engineering, University of California, Davis, California

Warren A. Hall Professor of Engineering, Water Resources Center, University of California, Los Angeles, California

Delbert W. Henderson Associate Professor, Department of Water Sciences and Engineering, University of California, Davis, California

Robert H. Hilgeman Horticulturist, Citrus Branch Station, University of Arizona, Tempe, Arizona

John W. Holmes Principal Research Scientist, Division of Soils, Commonwealth Scientific and Industrial Research Organization, Adelaide, S. A., Australia

Marvin Hoover Extension Cotton Specialist, University of California, Shafter, California

Clyde E. Houston Extension Irrigation and Drainage Engineer, Department of Water Science and Engineering, University of California, Davis, California

Roger P. Humbert Western Director, American Potash Institute, Inc., Los Gatos, California

Allen S. Humpherys Research Agricultural Engineer, Snake River Conservation Research Center, Soil and Water Conservation Research Division, Agricultural Research Service, US Department of Agriculture, Kimberly, Idaho

Theron B. Hutchings State Soil Scientist, Soil Conservation Service, US Department of Agriculture, Salt Lake City, Utah

Marvin E. Jensen Research Agricultural Engineer, Snake River Conservation Research Center, Soil and Water Conservation Research Division, Agriculture Research Service, US Department of Agriculture, Kimberly, Idaho

Cornelis Kalisvaart Senior Scientific Officer and Head of the Agricultural Research Department, Ijsselmeerpolders Development and Settlement Authority, Kampen, Netherlands
Amand N. Kasimatis Extension Viticulturist, Agricultural Extension Service, University of California, Davis, California

Wesley Keller Research Leader, Crops Research Laboratory, Arid Pasture and Range Investigations, Forage and Range Research Branch, Agricultural Research Service, US Department of Agriculture, Logan, Utah

Ludwig L. Kelly Formerly Chief Hydrologist, Soil and Water Conservation Research Division, Agricultural Research Service, US Department of Agriculture, Beltsville, Maryland (now retired)

William D. Kemper Research Soil Scientist (Physics) and Associate Professor, Northern Plains Branch, Soil and Water Conservation Research Division, Agricultural Research Service, US Department of Agriculture, and Department of Agronomy, Colorado State University, Fort Collins, Colorado

E. C. Klostermeyer Entomologist, Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, Washington

Arnold Klute Professor of Soil Physics, Department of Agronomy, University of Illinois, Urbana, Illinois

Paul J. Kramer James B. Duke Professor of Botany, Department of Botany, Duke University, Durham, North Carolina

John N. Landers Irrigation Specialist, IRI Instituto de Pesquisas—USAID, Rio de Janeiro, Brazil (formerly Research Assistant, Department of Water Science and Engineering, University of California, Davis, California)

Helmut E. Landsberg Director, Environmental Data Service, Environmental Science Services Administration, US Department of Commerce, Washington, D.C.

Cyril W. Lauritzen Project Supervisor, Soil and Water Conservation Research Division, Agricultural Research Service, US Department of Agriculture, Logan, Utah

John Letey, Jr. Associate Professor of Soil Physics, Department of Soils and Plant Nutrition, University of California, Riverside, California

Robert S. Loomis Associate Professor of Agronomy, Department of Agronomy, University of California, Davis, California

Owen R. Lunt Acting Chairman and Director, Laboratory of Nuclear Medicine and Radiation Biology, University of California, Los Angeles, California (formerly Professor of Plant Nutrition, Department of Botany and Plant Nutrition, University of California, Los Angeles, Calif.)

John R. Magness Formerly Chief, Fruit and Nut Crops Branch, Agricultural Research Service, US Department of Agriculture, Beltsville, Maryland (now retired)

John T. Maletic Soil Scientist and Chief, Land Resources Branch, Office of Chief Engineer, Bureau of Reclamation, US Department of the Interior, Denver, Colorado
CONTRIBUTORS

Paul D. Marr
Assistant Professor of Geography, Department of Geography, University of California, Davis, California

Stephen J. Mech
Research Agricultural Engineer, Irrigated Agriculture Research and Extension Center, Soil and Water Conservation Research Division, Agricultural Research Service, US Department of Agriculture, Prosser, Washington

J. D. Menzies
Research Microbiologist, US Soils Laboratory, Soil and Water Conservation Research Division, Agricultural Research Service, US Department of Agriculture, Beltsville, Maryland

Yoshiaki Mihara
Chief, Division of Meteorology, National Institute of Agricultural Sciences, Tokyo, Japan

Edward E. Miller
Professor of Physics and Soils, Department of Physics, University of Wisconsin, Madison, Wisconsin

Cleve H. Milligan
Professor of Civil and Agricultural Engineering, Utah State University, Logan, Utah

Dean C. Muckel
Chief, Northwest Branch, Soil and Water Conservation Research Division, Agricultural Research Service, US Department of Agriculture, Boise, Idaho (formerly Research Agricultural Engineer, Reno, Nevada)

Jack T. Musick
Research Agricultural Engineer, Southwestern Great Plains Research Center, Soil and Water Conservation Research Division, Agricultural Research Service, US Department of Agriculture, Bushland, Texas

Francis S. Nakayama

C. E. Nelson
Agronomist, Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, Washington

Donald R. Nielsen
Associate Professor, Department of Water Science and Engineering, University of California, Davis, California

George A. Pavelis

Howard L. Penman
Rothamsted Experimental Station, Harpenden, Herts, England

Herbert C. Pereira
Director, Agricultural Research Council of Central Africa, Salisbury, Rhodesia

Doyle B. Peters
Research Soil Scientist (Physics) and Associate Professor of Soil Physics, Agricultural Research Service, US Department of Agriculture, and Department of Agronomy, University of Illinois, Urbana, Illinois

Dean F. Peterson, Jr.
Dean, College of Engineering, Utah State University, Logan, Utah
John T. Phelan

Marshall B. Rainey
Sanitary Engineer and Project Director, Colorado River Basin Water Quality Control Project, Federal Water Pollution Control Administration, US Department of the Interior, Denver, Colorado

Franklin C. Raney
Associate Professor, Department of Geography, Western Washington State College, Bellingham, Washington

William A. Raney
Chief Soil Physicist, Soil and Water Conservation Research Division, Agricultural Research Service, US Department of Agriculture, Beltsville, Maryland

Ronald C. Reeve
Research Agricultural Engineer, Water Management, Soil and Water Conservation Research Division, Agricultural Research Service, US Department of Agriculture, Columbus, Ohio (formerly, Agricultural Engineer, US Salinity Laboratory, Riverside, California)

Walter Reuther
Chairman, Department of Horticultural Science, University of California, Riverside, California

H. F. Rhoades (deceased)
Professor of Agronomy, Department of Agronomy, University of Nebraska, Lincoln, Nebraska

Sterling J. Richards
Professor of Soil Physics, Department of Soils and Plant Nutrition, University of California, Riverside, California

Herbert S. Riesbol
Assistant to Manager of Hydro Engineering, Bechtel Corporation, San Francisco, California

John S. Robins
Superintendent and Soil Scientist, Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, Washington (formerly Chief, Northwest Branch, Soil and Water Conservation Research Division, ARS, USDA, Boise, Idaho)

August R. Robinson
Research Agricultural Engineer and Director, Snake River Conservation Research Center, Soil and Water Conservation Research Division, Agricultural Research Service, US Department of Agriculture, Kimberly, Idaho

Jack R. Runkles
Professor of Soil Physics, Department of Soil and Crop Sciences, Texas A & M University, College Station, Texas

Leonard Schiff
Research Agricultural Engineer, Soil and Water Conservation Research Division, Agricultural Research Service, US Department of Agriculture, Fresno, California

Richard A. Schleusener
Director, Institute of Atmospheric Sciences, South Dakota School of Mines and Technology, Rapid City, South Dakota

Robert W. Schloemer
Assistant Director, Environmental Data Service, Environmental Science Services Administration, US Department of Commerce, Washington, D.C.
CONTRIBUTORS

John G. Seeley Professor of Floriculture and Head, Department of Floriculture and Ornamental Horticulture, New York State College of Agriculture, Cornell University, Ithaca, New York

Aubrey L. Sharp Formerly Hydrologist, Soil and Water Conservation Research Division, Agricultural Research Service, US Department of Agriculture, Lincoln, Nebraska (now retired)

E. Shmueli Head, Division of Irrigation, Volcani Institute of Agricultural Research, Rehovot, Israel

Daryl B. Simons Professor of Civil Engineering and Associate Dean for Research, College of Engineering, Colorado State University, Fort Collins, Colorado

Ralph O. Slatyer Senior Principal Research Scientist, Commonwealth Scientific and Industrial Research Organization, Canberra, A. C. T., Australia

Dwight D. Smith Assistant Director, Water Management, Soil and Water Conservation Research Division, Agricultural Research Service, US Department of Agriculture, Beltsville, Maryland

William C. Smith Assistant Professor Anthropology, Department of Anthropology, University of California, Davis, California

Gilbert G. Stamm Assistant Commissioner, Bureau of Reclamation, US Department of the Interior, Washington, D.C.

G. Stanhill Department of Agricultural Meteorology, Volcani Institute of Agricultural Research, Rehovot, Israel

William J. Staple Soil Physicist, Soil Research Institute, Research Branch, Canada Department of Agriculture, Ottawa, Ontario, Canada

J. R. Stockton (deceased) Plant Physiologist and Irrigation Specialist, California Agricultural Experiment Station, Shafter, California

Lewis H. Stolzy Associate Soil Physicist, Department of Soils and Plant Nutrition, University of California, Riverside, California

Lawrence R. Swarner Agricultural Engineer, Bureau of Reclamation, US Department of the Interior, Boise, Idaho

Champ B. Tanner Professor of Soil Science, Department of Soil Science, University of Wisconsin, Madison, Wisconsin

Sterling A. Taylor Professor of Soils and Meteorology and Head, Department of Soils and Meteorology, Utah State University, Logan, Utah

P. W. Terrell Assistant Chief, Canals Branch, Bureau of Reclamation, US Department of the Interior, Denver, Colorado
CONTRIBUTORS

Harold E. Thomas

K. Uriu
Associate Pomologist, Department of Pomology, University of California, Davis, California

Yoash Vaadia
Plant Physiologist, Department of Plant Physiology, Negev Institute for Arid Zone Research, Beersheva, Israel

Cornelius H. M. van Bavel

Frank G. Viets, Jr.
Chief Soil Scientist, Soil and Water Conservation Research Division, Agricultural Research Service, US Department of Agriculture, Fort Collins, Colorado

M. T. Vittum
Head, Department of Vegetable Crops, Cornell University and New York State Agricultural Experiment Station, Geneva, New York

Victor Voth
Specialist in Pomology, South Coast Feld Station, Division of Agricultural Sciences, University of California, Santa Ana, California

Yoav Waisel
Lecturer of Botany, Department of Botany, Tel Aviv University, Tel Aviv, Israel

Lloyd V. Wilcox
Formerly Soil Scientist, US Salinity Laboratory, Soil and Water Conservation Research Division, Agricultural Research Service, US Department of Agriculture, Riverside, California (now retired)

Karl Ernst Witte
Dr. Agr. Dozent, Landwirtschaftliche Fakultät der Universität, Bonn, Germany

Neil P. Woodruff
Agricultural Engineer, Soil and Water Conservation Research Division, Agricultural Research Service, US Department of Agriculture, Manhattan, Kansas
CONTENTS

Foreword	vii
Preface	ix
Contributors	xi

SECTION I—INTRODUCTION

1 Irrigated Agriculture: An Historical Review

N. D. Gulhati and William Charles Smith

I Introduction	3
II Southwest Asia and North Africa	4
III Southern and Eastern Asia	4
IV Latin America	6
V North America	7
VI Concluding Remarks	9

2 The Social Context of Irrigation

Paul D. Marr

I Introduction	12
II Institutional Correlates of Irrigation Development and Decline	12
III Social and Economic Benefits of Irrigation Development	16
IV Problems of Project Planning and Operation	19

SECTION II—CLIMATIC ENVIRONMENT

3 World Climatic Regions in Relation to Irrigation

H. E. Landsberg and R. W. Schloemer

I Introduction	25
II General Circulation and Causes of Aridity	25
III Precipitation Patterns	27
IV The Pattern of World Aridity and Water Sources	30

4 Influence of Local Physiographic Features

Milton L. Blanc

I Introduction	33
II Effect of Local Physiography on Water Supply	33
III Effect of Local Physiography on Water Need and Water Use	38
IV Frost Protection	39
5 Weather Variation and Modification

Richard A. Schleusener and Lewis O. Grant

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I Weather Variation</td>
<td>40</td>
</tr>
<tr>
<td>II Weather Modification</td>
<td>42</td>
</tr>
<tr>
<td>III Current Status</td>
<td>45</td>
</tr>
<tr>
<td>IV Outlook</td>
<td>47</td>
</tr>
</tbody>
</table>

SECTION III—WATER SOURCES FOR IRRIGATION

6 Surface Water Supply and Development

H. S. Riesbol, C. H. Milligan, A. L. Sharp and L. L. Kelly

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I Introduction</td>
<td>53</td>
</tr>
<tr>
<td>II Measurements and Sources of Data</td>
<td>53</td>
</tr>
<tr>
<td>III Water Demands</td>
<td>56</td>
</tr>
<tr>
<td>IV Water Supply</td>
<td>60</td>
</tr>
<tr>
<td>V Regulation of Streamflow</td>
<td>63</td>
</tr>
<tr>
<td>VI Economic Considerations</td>
<td>66</td>
</tr>
<tr>
<td>VII Project Operation and Maintenance</td>
<td>66</td>
</tr>
</tbody>
</table>

7 Groundwater Supply and Development

Harold E. Thomas and Dean F. Peterson, Jr.

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I Introduction</td>
<td>70</td>
</tr>
<tr>
<td>II Exploration</td>
<td>72</td>
</tr>
<tr>
<td>III Well Development</td>
<td>74</td>
</tr>
<tr>
<td>IV Well Hydraulics</td>
<td>79</td>
</tr>
<tr>
<td>V Reservoir Management</td>
<td>84</td>
</tr>
</tbody>
</table>

8 Groundwater Recharge and Storage

Leonard Schiff and Dean C. Muckel

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I Selection of Recharge Site</td>
<td>93</td>
</tr>
<tr>
<td>II Movement of Recharge Water to the Water Table</td>
<td>95</td>
</tr>
<tr>
<td>III Measuring Water Movement in the Soil</td>
<td>96</td>
</tr>
<tr>
<td>IV Methods of Recharge</td>
<td>97</td>
</tr>
<tr>
<td>V Design of Recharge Facilities</td>
<td>101</td>
</tr>
<tr>
<td>VI Hydraulics of Groundwater Mounds</td>
<td>102</td>
</tr>
</tbody>
</table>

9 Quality of Irrigation Water

L. V. Wilcox and W. H. Durum

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I Introduction</td>
<td>104</td>
</tr>
<tr>
<td>II Irrigation Water Analysis</td>
<td>104</td>
</tr>
<tr>
<td>III Classification and Interpretation of Water Analyses</td>
<td>108</td>
</tr>
<tr>
<td>IV Physical Quality of Irrigation Water</td>
<td>115</td>
</tr>
<tr>
<td>V Treatment to Improve Quality</td>
<td>117</td>
</tr>
<tr>
<td>VI Trends in Water Quality</td>
<td>119</td>
</tr>
</tbody>
</table>
SECTION IV—SELECTION OF LAND FOR IRRIGATION

10 Selection and Classification of Irrigable Land

JOHN T. MALETIC AND T. B. HUTCHINGS

I Introduction ... 125
II Basic Principles 128
III Physical Factors 130
IV Field Methods ... 156

11 Economics of Irrigation Policy and Planning

HARRY A. STEELE AND GEORGE A. PAVELIS

I Economics of Farm Irrigation 174
II Economics of Project Planning 184
III Some General Policy Issues in Irrigation 188

SECTION V—SOIL-WATER RELATIONS

12 Nature of Soil Water

PAUL R. DAY, G. H. BOLT, AND D. M. ANDERSON

I Introduction ... 193
II The Forms and Occurrence of Soil Water 193
III Properties of Soil Water 195
IV Forces Acting on Soil Water 197
V Soil Water Suction and Its Relationship to Water Content 200
VI The Potential Concept 202
VII Conclusions: Implication of Soil Water Theory With Respect to Irrigation Science 207

13 The Dynamics of Soil Water

Part I—Mechanical Forces

E. E. MILLER AND A. KLUTE

I Characterization of Flow Through Moist Soils 209
II Analysis of Flow Systems 215
III Application to Irrigation 219
IV Unsolved Problems 240

Part II—Temperature and Solute Effects

JOHN W. CARY AND S. A. TAYLOR

I Introduction ... 245
II Changes in Conductivity 245
III Changes in Potential 246
IV Summary .. 251
CONTENTS

14 Miscible Displacement and Leaching Phenomenon

J. W. Biggar and D. R. Nielsen

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>I Fluid Properties</td>
<td>254</td>
</tr>
<tr>
<td>II Unsaturated Flow</td>
<td>258</td>
</tr>
<tr>
<td>III Exchange Processes</td>
<td>261</td>
</tr>
<tr>
<td>IV Theoretical Development</td>
<td>262</td>
</tr>
<tr>
<td>V Leaching Field Soils</td>
<td>266</td>
</tr>
<tr>
<td>VI Future Investigations</td>
<td>269</td>
</tr>
</tbody>
</table>

15 Measurement of Soil Water

J. W. Holmes, S. A. Taylor and S. J. Richards

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>I Water Content of Soils</td>
<td>275</td>
</tr>
<tr>
<td>II Soil Water Potential</td>
<td>279</td>
</tr>
<tr>
<td>III Calibrated Methods for Measurement of Either Water Content or Matric Potential (or Suction)</td>
<td>286</td>
</tr>
<tr>
<td>IV Interconversion of Water Content and Matric Suction Measurements</td>
<td>289</td>
</tr>
<tr>
<td>V Hydraulic Conductivity of Saturated and Unsaturated Soils: Soil Water Diffusivity</td>
<td>290</td>
</tr>
<tr>
<td>VI Infiltration and Infiltration Rate</td>
<td>297</td>
</tr>
<tr>
<td>VII Relation of In Situ to Disturbed Sample Measurement</td>
<td>298</td>
</tr>
<tr>
<td>VIII Conductivity and Diffusivity as Derived Properties</td>
<td>298</td>
</tr>
</tbody>
</table>

SECTION VI—PLANT-WATER RELATIONS

16 Nature of Plant Water

H. B. Currier

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>I Introduction</td>
<td>307</td>
</tr>
<tr>
<td>II Roles of Plant Water</td>
<td>307</td>
</tr>
<tr>
<td>III Water in the Cell Components and Specific Roles</td>
<td>308</td>
</tr>
<tr>
<td>IV Energy Status of Plant Water</td>
<td>313</td>
</tr>
</tbody>
</table>

17 Water Absorption, Conduction, and Transpiration

Paul J. Kramer, Orlin Biddulph and Francis S. Nakayama

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>I The Absorption of Water</td>
<td>320</td>
</tr>
<tr>
<td>II Water Conduction</td>
<td>325</td>
</tr>
<tr>
<td>III Transpiration</td>
<td>329</td>
</tr>
</tbody>
</table>

18 Measurements of Internal Water Status and Transpiration

R. O. Slattery and E. Shmueli

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>I Introduction</td>
<td>337</td>
</tr>
<tr>
<td>II Measurements of Tissue Water Content</td>
<td>337</td>
</tr>
<tr>
<td>III Measurements of Water Potential Ψ</td>
<td>340</td>
</tr>
<tr>
<td>IV Measurements of Vacuolar Osmotic Pressure II</td>
<td>343</td>
</tr>
<tr>
<td>V Measurements of Stomatal Aperture</td>
<td>344</td>
</tr>
<tr>
<td>VI Measurements of Transpiration</td>
<td>345</td>
</tr>
</tbody>
</table>
CONTENTS

19 Physiological Processes as Affected by Water Balance

YOASH VAADIA AND YOAV WAISEL

I Introduction .. 354
II Problems of Definition and Measurement 354
III Cell Water Relations and Growth 355
IV Protoplasmic Hydration 360
V Photosynthesis 361
VI Respiration .. 363
VII Plant Metabolism 364
VIII Plant Composition 367
IX Conclusions 368

20 Shoot and Root Growth as Affected by Water Availability

D. B. PETERS AND J. R. RUNKLES

I Introduction .. 373
II Germination .. 373
III Emergence .. 375
IV Root Growth .. 376
V Shoot Growth ... 381
VI Shoot-Root Ratio 384
VII Reproduction as Affected by Soil Water Availability 385
VIII Summary ... 386

21 Root Systems in Relation to Irrigation

R. E. DANIELSON

I Introduction .. 390
II Root Morphology and Anatomy 390
III The Rooting Habit of Crop Plants 393
IV Absorption of Water by Plant Roots 397
V Influence of Soil and Cultural Factors on Root Development . 400
VI Root Development and Irrigation Practices 413

SECTION VII—WATER-SOIL-PLANT RELATIONS

22 Comparative Terminologies for Water in the Soil-Plant-Atmosphere System

A. T. COREY, R. O. SLATYER AND W. D. KEMPER

I Introduction .. 427
II Terms Referring to Water Content 428
III Terms Referring to the State of Fluids 428
IV Terms Referring to Movement of Fluids 440
V Summary .. 444

23 Factors Affecting Plant Responses to Soil Water

G. STANHILL AND YOASH VAADIA

I Introduction .. 446
II Plant Water Status and Crop Responses 447
III Water Potentials and Fluxes in the Soil-Plant-Atmosphere Continuum .. 447
IV The Concept of Soil Water Availability 453
CONTENTS

24 Nutrient Availability in Relation to Soil Water
 FRANK G. VIETS, JR.
 I Introduction .. 458
 II Effects of Water on the Pools of Essential Nutrients 459
 III Water and the Transport of Nutrients 460
 IV Nutrient Uptake at Nearly Constant Soil Water Suction . 463
 V Nutrient Availability and Water Regimes 464
 VI Nutrient Availability in Relation to Excess Water 466
 VII Moisture Regime and Nutrient Content in Plant Parts ... 467
 VIII Significance of Nutrient Availability to the Expression of Soil Water Suction Effects on Plant Growth 467

25 Microbial Activity in Relation to Soil Water and Soil Aeration
 FRANCIS E. CLARK AND W. D. KEMPER
 I Introduction .. 472
 II Microbial Activity in Drouthy Soil 472
 III Available Oxygen and Microbial Oxygen Demand in Wet Soils 474
 IV Influences of Microorganisms on Plant Nutrients in Wet Soils 478
 V Microbially Induced Physical Conditions Affecting the Soil Water .. 479

SECTION VIII—EVAPOTRANSPIRATION

26 Microclimatic Factors Affecting Evaporation and Transpiration
 H. L. PENMAN, D. E. ANGUS AND C. H. M. VAN BAVEL
 I List of Symbols .. 483
 II Introduction .. 484
 III Aerodynamics of Evaporation 485
 IV Energetics of Evaporation 491
 V A Working Approximation 497
 VI A Note on Advection ... 503

27 Plant Factors Affecting Evapotranspiration
 DAVID M. GATES AND R. J. HANKS
 I Single Plant Factors that Influence Evapotranspiration 506
 II Community Plant Factors That Influence Evapotranspiration 508
 III Specific Properties of the Plant Community that Influence Evapotranspiration 512
 IV Possibilities of Changing Plant Factors to Alter Evapotranspiration .. 518
 V Influence of the Plant Factor in Equations Used to Predict Evapotranspiration 518
 VI Summary .. 519

28 Soil and Cultural Factors Affecting Evapotranspiration
 P. C. EKERN, JR., J. S. ROBINS, AND W. J. STAPLE
 I Introduction .. 522
 II Mechanisms for Limiting Evapotranspiration 522
 III Soil Factors .. 523
 IV Cultural Factors .. 527
CONTENTS

29 Measurement of Evapotranspiration
C. B. Tanner

I List of Symbols 534
II Introduction 534
III Water Balance Methods 535
IV Micrometeorological Measurements 545
V Empirical Methods 555

SECTION IX—PREDICTING IRRIGATION NEEDS

30 Soil, Plant, and Evaporative Measurements as Criteria for Scheduling Irrigation
Howard R. Haise and Robert M. Hagan

I Introduction 577
II Soil Water Indicators and Measurements .. 578
III Plant Water Indicators and Measurements . 584
IV Meteorological Approaches 592
V Practical Considerations in Scheduling Irrigations . 597

SECTION X—IRRIGATION OF PRINCIPAL CROPS

31 Forage Crops
Wesley Keller and Carl W. Carlson

I Introduction 607
II Irrigating Perennial Forage Crops 608
III Irrigating Annual Forage Crops 616
IV Forage Production on Saline Soil 617
V Irrigation of Forage Crops in the Humid Eastern USA 618
VI The Future of Irrigated Forage Crops 618

32 Grain and Field Crops
J. S. Robins, J. T. Musick, D. C. Finfrock and H. F. Rhoades

I Introduction 622
II Crop Characteristics Influencing Irrigation Practices 623
III Irrigation Systems and Practices 632
IV Recommended Irrigation Practices 634

33 Sugar, Oil, and Fiber Crops
Part I—Sugar Beets
R. S. Loomis and Jay L. Haddock

I Crop Development 640
II Evapotranspiration 641
III Effects of Water Stress 642
IV Recovery From Stress 644
V Correlation of Plant Growth With Soil Water 644
VI Irrigation and Plant Nutrition 645
VII Some Other Aspects of Irrigation Management 646
VIII Summary 647
CONTENTS

37 Grapes and Berries
 Part I—Grapes
 A. N. Kasimatis
 I Characteristics of the Grapevine 719
 II Responses to Soil Water Conditions 721
 III Growth Periods Sensitive to Soil Water Conditions 724
 IV Effects on Quality 727
 V Problems Influenced by Irrigation Method or Frequency 728
 VI Summary of Irrigation Recommendations 729

37 Grapes and Berries
 Part II—Strawberries
 Victor Voth
 I Introduction 734
 II Plant Characteristics 734
 III Soil Requirements 735
 IV Irrigation Methods 735
 V Water Requirements 736
 VI Irrigating Scheduling 736

38 Coffee, Tea, Cacao, and Tobacco
 H. C. Pereira
 I The Irrigation of Coffee 738
 II The Irrigation of Tea 743
 III The Irrigation of Cacao 746
 IV The Irrigation of Tobacco 747

39 Turfgrass, Flowers, and Other Ornamentals
 O. R. Lunt and J. G. Seeley
 I Introduction 753
 II Turfgrass 754
 III Ornamentals 759

SECTION XI—IRRIGATION SYSTEMS

40 Problems and Procedures in Determining Water Supply Requirements for Irrigation Projects
 G. G. Stamm
 I Introduction 771
 II Water Supply 772
 III Consumptive Use 774
 IV Leaching Requirement 776
 V Irrigation Efficiency 776
 VI Diversion Requirements 778
 VII Reservoir Operation Studies 783
 VIII Water Shortages 784
41 Conveyance and Distribution Systems

DARYL B. SIMONS

I Introduction .. 786
II Principles of Flow .. 787
III Summary .. 826

42 Water Control and Measurement on the Farm

A. R. ROBINSON AND A. S. HUMPHREYS

I Open-Channel Systems .. 828
II Closed Systems ... 850

43 Surface Irrigation Systems

A. ALVIN BISHOP, MARVIN E. JENSEN, AND WARREN A. HALL

I Surface Irrigation ... 865
II Design Principles and Practices 869

44 Sprinkler Irrigation Systems

JERALD E. CHRISTIANSEN AND JOHN R. DAVIS

I Introduction .. 885
II Types of Sprinkler Systems—General Description 886
III Types of Sprinklers ... 890
IV Uniformity of Application of Sprinklers 891
V Sprinkler Application Efficiency 894
VI Hydraulics of Sprinkler Systems 894
VII Principles of Sprinkler System Selection 896
VIII Design of Sprinkler Systems 897
IX Pipeline Design and Layout 899
X Other Agricultural Uses of Sprinkler Equipment 902
XI Summary .. 903

45 Subirrigation Systems

WAYNE D. CRIDDLE AND CORNELIS KALISVAART

I Introduction .. 905
II Subirrigation in Humid Regions 905
III Principles of Subirrigation 906
IV Developing Subirrigation in Humid Regions 913
V Subirrigation in Arid and Semiarid Regions 915
VI Developing Subirrigation in Arid and Semiarid Regions .. 916
VII Design Criteria .. 918
VIII General Requirements for Subirrigation 919

SECTION XII—IRRIGATION MANAGEMENT

46 Control of Water Intake Rates

D. W. HENDERSON AND HOWARD R. Haise

I Introduction .. 925
II General Factors Affecting Intake Rates 926
III Reducing Excessive Intake 929
IV Increasing Water Intake 930
III Movement of Fertilizer Nutrients as Affected by Method of Irrigation 1012
IV Field Comparisons of Irrigation Method on Fertilizer Requirements 1014
V Application of Fertilizers in Irrigation Water 1015
VI Fertility Considerations in the Selection of an Irrigation System 1021

53 Water and Soil Temperature
F. C. Raney and Yoshiaki Mihara
I Introduction 1024
II Temperatures of Irrigation Water Sources 1024
III Crop Growth Relative to Root Temperature 1029
IV Methods for Modifying Water Temperature 1032
V Use of Irrigation to Modify Effects of Extreme Soil and Air Temperatures 1033

54 Irrigation for Frost Protection
John N. Landers and K. Witte
I Frost Types and Formation 1037
II Environmental and Crop Factors in Frost Protection 1039
III Irrigation as a Frost Control Technique 1043
IV Selection and Design of Systems 1053
V Summary and Conclusion 1055

55 Plant Diseases Related to Irrigation
J. D. Menzies
1058

56 Insect Problems of Irrigated Lands
E. C. Klostermeyer
1065

57 Public Health Problems Related to Irrigation
M. B. Raney and A. D. Hess
I Introduction 1070
II Vector-Borne Diseases and Related Problems 1070
III Water Pollution Problems 1076
IV Summary 1078

58 Irrigation Problems of Humid-Temperate and Tropical Regions
W. A. Raney
I Introduction 1082
II Drought Criteria 1082
III Drought Evasion 1083
IV Irrigation Water Source 1083
V Water Management Requirements 1084
VI Economics 1084
VII Present Use of Irrigation in Humid Areas 1085
VIII The Future of Irrigation in the Humid Region 1085
SECTION XIII—WATER CONSERVATION RELATED TO IRRIGATION

59 Watershed Management
R. H. Burgy, J. E. Fletcher, and A. L. Sharp

I Introduction .. 1089
II Precipitation ... 1089
III Effects of Watershed Treatment on Water Yield 1095
IV Summary ... 1102

60 Reducing Water Losses in Conveyance and Storage
C. W. Lauritzen and P. W. Terrell

I Introduction .. 1105
II Water Loss Measurements 1106
III Canal and Reservoir Linings 1109
IV Irrigation Pipe .. 1116
V Evaporation Suppression 1117

61 Improving Irrigation Efficiencies
Marvin E. Jensen, Lawrence R. Swarner, and John T. Phelan

I Evaluating Irrigation Efficiency 1120
II Improving Project Irrigation Efficiencies 1129
III Improving Farm Water Conveyance and Application Efficiencies 1136

62 Reducing Irrigation Requirements
J. S. Robins

I Introduction .. 1143
II Irrigation System Design, Water Control, and Management 1143
III Crop Adaptation, Variety Selection and Improvement, and Cultural Practices 1144
IV Improving Use of Precipitation 1147
V Evaporation and Transpiration Control 1149
VI Soil and Plant Management Practices 1156