AGRONOMY

A Series of Monographs

The American Society of Agronomy (ASA) and Academic Press published the first six books in this series. Subsequent books were published by ASA alone, but in 1978 the associated societies, ASA, Crop Science Society of America (CSSA), and Soil Science Society of America (SSSA), published Agronomy 19. The books numbered 1 to 6 on the list below are available from Academic Press, Inc., 111 Fifth Avenue, New York, NY 10003; those numbered 7 to 22 are available from ASA, 677 S. Segoe Road, Madison, WI 53711.

General Editor Monographs 1 to 6, A. G. NORMAN

1. C. EDMUND MARSHALL: The Colloid Chemical of the Silicate Minerals, 1949
2. BYRON T. SHAW, Editor: Soil Physical Conditions and Plant Growth, 1952
3. K. D. JACOB: Fertilizer Technology and Resources in the United States, 1953
5. GEORGE F. SPRAGUE, Editor: Corn and Corn Improvement, 1955
6. J. LEVITT: The Hardiness of Plants, 1956

7. JAMES N. LUTHIN, Editor: Drainage of Agricultural Lands, 1957

General Editor, D. E. Gregg

8. FRANKLIN A. COFFMAN, Editor: Oats and Oat Improvement

Managing Editor, H. L. Hamilton

Part 1—Physical and Mineralogical Properties, Including Statistics of Measurement and Sampling
A. L. PAGE, Editor: Methods of Soil Analysis, 1982

Part 2—Chemical and Microbiological Properties, Second Edition

Managing Editor, R. C. Dinauer

(Out of print; replaced by no. 22)

Managing Editor, H. L. Hamilton

Managing Editor, R. C. Dinauer

Managing Editor, R. C. Dinauer

Managing Editor, H. L. Hamilton

Managing Editor, H. L. Hamilton

15. CLARENCE H. HANSON, Editor: Alfalfa Science and Technology, 1972

Managing Editor, H. L. Hamilton

16. B. E. CALDWELL, Editor: Soybeans: Improvement, Production, and Use, 1973

Managing Editor, H. L. Hamilton

17. JAN VAN SCHILFGAARDE, Editor: Drainage for Agriculture, 1974

Managing Editor, R. C. Dinauer

18. GEORGE F. SPRAGUE, Editor: Corn and Corn Improvement, 1977

Managing Editor, D. A. Fuccillo

19. JACK F. CARTER, Editor: Sunflower Science and Technology, 1978

Managing Editor, D. A. Fuccillo

20. ROBERT C. BUCKNER and L. P. BUSH, Editors: Tall Fescue, 1979

Managing Editor, D. A. Fuccillo

Managing Editor, R. C. Dinauer

22. F. J. STEVENSON, Editor: Nitrogen in Agricultural Soils, 1982

Managing Editor, R. C. Dinauer
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td></td>
<td>xvii</td>
</tr>
<tr>
<td>GENERAL FOREWORD</td>
<td></td>
<td>xviii</td>
</tr>
<tr>
<td>FOREWORD</td>
<td></td>
<td>xviii</td>
</tr>
<tr>
<td>PREFACE</td>
<td></td>
<td>xix</td>
</tr>
<tr>
<td>CONTRIBUTORS</td>
<td></td>
<td>xxi</td>
</tr>
</tbody>
</table>

1 Dissolution for Total Elemental Analysis

CHIN HUAT LIM AND MARION L. JACKSON

1-1 Introduction | 1
1-2 Principles | 1
1-3 Method for Preparation of Sample | 3
1-4 Method for Loss on Ignition | 4
1-5 Method for Digestion with Hydrofluoric Acid in Closed Vessel | 5
1-6 Method for Digestion with Hydrofluoric, Sulfuric, and Perchloric Acids | 7
1-7 Method for Pretreatment of Soils High in Ferric Oxide and Manganese Dioxide | 8
1-8 Method for Fusion with Sodium Carbonate | 9
1-9 Literature Cited | 11

2 Atomic Absorption and Flame Emission Spectrometry

DALE E. BAKER AND NORMAN H. SUHR

2-1 Introduction | 13
2-2 Principles | 14
2-3 Instrumentation | 15
2-4 Preparation of Solutions | 21
2-5 Measuring and Improving Accuracy | 23
2-6 Literature Cited | 26

3 Optical Emission Spectrometry

PARVIZ N. SOLTANPOUR, J. BENTON JONES, JR., AND STEPHEN M. WORKMAN

3-1 Introduction | 29
3-2 General Principles | 29
3-3 Instrumentation | 30
3-4 Analytical Capabilities | 38
3-5 Practical Applications | 54
3-6 Quality Control Methods | 61
3-7 Summary | 62
3-8 Literature Cited | 63
CONTENTS

4 Neutron Activation Analysis

PHILIP A. HELMKE

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-1 Introduction</td>
<td>67</td>
</tr>
<tr>
<td>4-2 Principles</td>
<td>68</td>
</tr>
<tr>
<td>4-3 Equipment</td>
<td>78</td>
</tr>
<tr>
<td>4-4 General Methods</td>
<td>80</td>
</tr>
<tr>
<td>4-5 Literature Cited</td>
<td>83</td>
</tr>
</tbody>
</table>

5 X-ray Fluorescence Spectrometry

ANGELA A. JONES

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-1 Introduction</td>
<td>85</td>
</tr>
<tr>
<td>5-2 Principles</td>
<td>86</td>
</tr>
<tr>
<td>5-3 Method for Analysis of Major Elements</td>
<td>103</td>
</tr>
<tr>
<td>5-4 Method for Analysis of Minor and Trace Elements</td>
<td>113</td>
</tr>
<tr>
<td>5-5 Literature Cited</td>
<td>118</td>
</tr>
</tbody>
</table>

6 High-Pressure Liquid Chromatography

JOHN J. HASSELT

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-1 Introduction</td>
<td>123</td>
</tr>
<tr>
<td>6-2 Principles</td>
<td>123</td>
</tr>
<tr>
<td>6-3 Instrumentation</td>
<td>129</td>
</tr>
<tr>
<td>6-4 Literature Cited</td>
<td>131</td>
</tr>
</tbody>
</table>

7 Anodic Stripping Voltammetry and Differential Pulse Polarography

JIMMY J. STREET AND WILLIAM M. PETERSON

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-1 Introduction</td>
<td>133</td>
</tr>
<tr>
<td>7-2 Conventional Direct Current Polarography</td>
<td>134</td>
</tr>
<tr>
<td>7-3 Normal Pulse Polarography</td>
<td>138</td>
</tr>
<tr>
<td>7-4 Differential Pulse Polarography</td>
<td>140</td>
</tr>
<tr>
<td>7-5 Anodic Stripping Voltammetry</td>
<td>144</td>
</tr>
<tr>
<td>7-6 Instrumentation</td>
<td>146</td>
</tr>
<tr>
<td>7-7 Literature Cited</td>
<td>148</td>
</tr>
</tbody>
</table>

8 Cation Exchange Capacity

J. D. RHOADES

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-1 Introduction</td>
<td>149</td>
</tr>
<tr>
<td>8-2 Sources of Error in Conventional CEC Methods</td>
<td>151</td>
</tr>
<tr>
<td>8-3 Cation Exchange Capacity of Arid Land Soils</td>
<td>152</td>
</tr>
<tr>
<td>8-4 Cation Exchange Capacity of Acid Soils</td>
<td>154</td>
</tr>
<tr>
<td>8-5 Literature Cited</td>
<td>157</td>
</tr>
</tbody>
</table>

9 Exchangeable Cations

GRANT W. THOMAS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9-1 Introduction</td>
<td>159</td>
</tr>
<tr>
<td>9-2 Exchangeable Basic Cations</td>
<td>159</td>
</tr>
</tbody>
</table>
CONTENTS

9-3 Replacement of Exchangeable Cations ... 160
9-4 Exchangeable Acidity ... 161
9-5 Literature Cited ... 164

10 Soluble Salts

J. D. RHOADES

10-1 Introduction ... 167
10-2 Saturation Extract and Other Aqueous Extracts 168
10-3 Soluble Constituents in Soil Waters and Aqueous Extracts 170
10-4 Literature Cited ... 178

11 Carbonate and Gypsum

R. E. NELSON

11-1 General Introduction ... 181
11-2 Carbonate .. 182
11-3 Gypsum ... 192
11-4 Expressing Properties of Gypsiferous Soils ... 195
11-5 Literature Cited ... 196

12 Soil pH and Lime Requirement

E. O. MC LEAN

12-1 General Introduction ... 199
12-2 Soil pH (Hydrogen Ion Activity): Intensity Factor of Soil Acidity 200
12-3 Lime Requirement: Capacity Factor of Soil Acidity 209
12-4 Literature Cited ... 223

13 Lithium, Sodium, and Potassium

D. KNUDSEN, G. A. PETERSON, AND P. F. PRATT

13-1 General Introduction ... 225
13-2 Total Analysis ... 226
13-3 Exchangeable and Soluble Potassium .. 228
13-4 Exchangeable and Soluble Sodium ... 238
13-5 Exchangeable and Soluble Lithium ... 241
13-6 Literature Cited ... 245

14 Magnesium, Calcium, Strontium, and Barium

LES E. LANYON AND WALTER R. HEALD

14-1 Introduction ... 247
14-2 Fractionation Methods ... 248
14-3 Analytical Methods ... 252
14-4 Availability Indices ... 258
14-5 Literature Cited ... 260
Contents

15 Silicon
C. T. HALLMARK, L. P. WILDING, AND N. E. SMECK

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-1 Introduction</td>
<td>263</td>
</tr>
<tr>
<td>15-2 Principles</td>
<td>265</td>
</tr>
<tr>
<td>15-3 Procedures</td>
<td>268</td>
</tr>
<tr>
<td>15-4 Literature Cited</td>
<td>271</td>
</tr>
</tbody>
</table>

16 Aluminum
RICHARD BARNHISEL AND PAUL M. BERTSCH

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16-1 General Introduction</td>
<td>275</td>
</tr>
<tr>
<td>16-2 Total Aluminum</td>
<td>276</td>
</tr>
<tr>
<td>16-3 Exchangeable Aluminum</td>
<td>281</td>
</tr>
<tr>
<td>16-4 Characterization of Hydroxy-Aluminum Materials</td>
<td>283</td>
</tr>
<tr>
<td>16-5 Colorimetric Methods for Aluminum Analysis</td>
<td>288</td>
</tr>
<tr>
<td>16-6 Alternative Methods for Aluminum Analysis</td>
<td>292</td>
</tr>
<tr>
<td>16-7 Literature Cited</td>
<td>296</td>
</tr>
</tbody>
</table>

17 Iron
R. V. OLSON AND ROSCOE ELLIS, JR.

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17-1 General Introduction</td>
<td>301</td>
</tr>
<tr>
<td>17-2 Total Iron</td>
<td>301</td>
</tr>
<tr>
<td>17-3 Exchangeable Iron</td>
<td>307</td>
</tr>
<tr>
<td>17-4 Availability Indices</td>
<td>308</td>
</tr>
<tr>
<td>17-5 Free Iron Oxides</td>
<td>311</td>
</tr>
<tr>
<td>17-6 Literature Cited</td>
<td>312</td>
</tr>
</tbody>
</table>

18 Manganese
ROBERT P. GAMBRELL AND WILLIAM H. PATRICK, JR.

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-1 Introduction</td>
<td>313</td>
</tr>
<tr>
<td>18-2 Analysis</td>
<td>314</td>
</tr>
<tr>
<td>18-3 Availability Indices</td>
<td>316</td>
</tr>
<tr>
<td>18-4 Literature Cited</td>
<td>322</td>
</tr>
</tbody>
</table>

19 Nickel, Copper, Zinc, and Cadmium
DALE E. BAKER AND MICHAEL C. AMACHER

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>19-1 Introduction</td>
<td>323</td>
</tr>
<tr>
<td>19-2 Total Nickel, Copper, Zinc, and Cadmium</td>
<td>324</td>
</tr>
<tr>
<td>19-3 Availability Indices</td>
<td>328</td>
</tr>
<tr>
<td>19-4 Literature Cited</td>
<td>334</td>
</tr>
</tbody>
</table>

20 Chromium
H. M. REISENAUER

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-1 Introduction</td>
<td>337</td>
</tr>
<tr>
<td>20-2 Determination of Chromium</td>
<td>338</td>
</tr>
</tbody>
</table>
CONTENTS

20–3 Total Soil Chromium .. 342
20–4 Availability Indices .. 343
20–5 Literature Cited ... 344

21 Lead

R. G. BURAU

21–1 Introduction ... 347
21–2 Sampling .. 347
21–3 Sample Preparation .. 348
21–4 Total Lead in Soils .. 348
21–5 Selective Extraction 351
21–6 Separation and Concentration 352
21–7 Quantitation .. 356
21–8 Species of Lead in Soils and Aqueous Extracts of Soils ... 358
21–9 Recommended Procedure 359
21–10 Literature Cited ... 362

22 Mercury

JOHN W. B. STEWART AND JEFF R. BETTANY

22–1 General Introduction 367
22–2 Total Mercury in Soils and Sediments 369
22–3 Total Mercury in Soil Extracts, Leachates, and Water Samples ... 377
22–4 Organic Mercury Compounds 381
22–5 Mercury-203 Assay Procedures 382
22–6 Literature Cited ... 382

23 Arsenic

T. J. GANJE AND D. W. RAINS

23–1 Introduction ... 385
23–2 General Principles of Analysis 386
23–3 Total Arsenic–Silver Diethyldithiocarbamate 387
23–4 Total Arsenic–Hydride Evolution and Atomic Absorption Spectroscopy ... 391
23–5 Availability Indices 398
23–6 Literature Cited ... 400

24 Phosphorus

S. R. OLSEN AND L. E. SOMMERS

24–1 Introduction ... 403
24–2 Total Phosphorus .. 404
24–3 Organic Phosphorus 407
24–4 Fractionation of Soil Phosphorus 414
24–5 Availability Indices 416
24–6 Literature Cited ... 427
CONTENTS

29 Total Carbon, Organic Carbon, and Organic Matter

D. W. NELSON AND L. E. SOMMERS

29-1 General Introduction ... 539
29-2 Total Carbon .. 542
29-3 Organic Carbon ... 561
29-4 Organic Matter ... 574
29-5 Literature Cited ... 577

30 Organic Matter Characterization

M. SCHNITZER

30-1 Introduction .. 581
30-2 Extraction of Soil Organic Matter 582
30-3 Fractionation of Soil Extracts 584
30-4 Purification of Humic and Fulvic Acids 585
30-5 Characterization of Humic Materials by Chemical Methods . 586
30-6 Characterization of Humic Materials by Spectrometric Methods . 591
30-7 Other Methods ... 593
30-8 Literature Cited ... 593

31 Nitrogen—Total

J. M. BREMNER AND C. S. MULVANEY

31-1 Introduction .. 595
31-2 Principles of Kjeldahl Methods 599
31-3 Regular Kjeldahl Method 610
31-4 Ammonia Electrode Modification of Kjeldahl Method 616
31-5 Hydrofluoric Acid Modification of Kjeldahl Method to Include Fixed Ammonium ... 618
31-6 Permanganate-reduced Iron Modification of Kjeldahl Method to Include Nitrate and Nitrite 619
31-7 Salicylic Acid–Thiosulfate Modification of Kjeldahl Method to Include Nitrate and Nitrite 621
31-8 Literature Cited ... 622

32 Nitrogen—Organic Forms

F. J. STEVENSON

32-1 Introduction .. 625
32-2 Recovery of Various Forms of Nitrogen as Ammonia by Steam Distillation Procedures 627
32-3 Colorimetric Method for Amino Acids 634
32-4 Colorimetric Method for Amino Sugars 637
32-5 Literature Cited ... 641

33 Nitrogen—Inorganic Forms

D. R. KEENEY AND D. W. NELSON

33-1 General Introduction ... 643
33-2 Methods for Determination of Inorganic Nitrogen in Soils and Soil Extracts ... 645
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>Extraction of Exchangeable Ammonium, Nitrate, and Nitrite</td>
<td>33-3 Extraction of Exchangeable Ammonium, Nitrate, and Nitrite</td>
</tr>
<tr>
<td></td>
<td>Steam Distillation Methods for Exchangeable Ammonium, Nitrate, and Nitrite</td>
<td>33-4 Steam Distillation Methods for Exchangeable Ammonium, Nitrate, and Nitrite</td>
</tr>
<tr>
<td></td>
<td>Microdiffusion Methods for Exchangeable Ammonium, Nitrate, and Nitrite</td>
<td>33-5 Microdiffusion Methods for Exchangeable Ammonium, Nitrate, and Nitrite</td>
</tr>
<tr>
<td></td>
<td>Specific Ion Electrode Methods for Exchangeable Ammonium and Nitrate</td>
<td>33-6 Specific Ion Electrode Methods for Exchangeable Ammonium and Nitrate</td>
</tr>
<tr>
<td></td>
<td>Ammonium by Colorimetric Methods</td>
<td>33-7 Ammonium by Colorimetric Methods</td>
</tr>
<tr>
<td></td>
<td>Nitrate by Colorimetric Methods</td>
<td>33-8 Nitrate by Colorimetric Methods</td>
</tr>
<tr>
<td></td>
<td>Nitrite by Colorimetric Methods</td>
<td>33-9 Nitrite by Colorimetric Methods</td>
</tr>
<tr>
<td></td>
<td>Nonexchangeable Ammonium</td>
<td>33-10 Nonexchangeable Ammonium</td>
</tr>
<tr>
<td></td>
<td>Literature Cited</td>
<td>33-11 Literature Cited</td>
</tr>
<tr>
<td>34</td>
<td>Nitrogen—Urea</td>
<td>34 Nitrogen—Urea</td>
</tr>
<tr>
<td></td>
<td>J. M. BREMNER</td>
<td>34-1 Introduction</td>
</tr>
<tr>
<td></td>
<td>34-2 Principles</td>
<td></td>
</tr>
<tr>
<td></td>
<td>34-3 Colorimetric Methods</td>
<td></td>
</tr>
<tr>
<td></td>
<td>34-4 Enzymatic Methods</td>
<td></td>
</tr>
<tr>
<td></td>
<td>34-5 Literature Cited</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Nitrogen—Availability Indices</td>
<td>35 Nitrogen—Availability Indices</td>
</tr>
<tr>
<td></td>
<td>DENNIS R. KEENEY</td>
<td>35-1 Introduction</td>
</tr>
<tr>
<td></td>
<td>35-2 Utilization of Nitrogen Availability Indices</td>
<td></td>
</tr>
<tr>
<td></td>
<td>35-3 Residual Profile Nitrate</td>
<td></td>
</tr>
<tr>
<td></td>
<td>35-4 Laboratory Indices of Nitrogen Availability</td>
<td></td>
</tr>
<tr>
<td></td>
<td>35-5 Recommended Biological Index—Ammonium—Nitrogen Production Under Waterlogged Conditions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>35-6 Recommended Chemical Index—Ammonium—Nitrogen Released on Autoclaving in Dilute Calcium Chloride Solution</td>
<td></td>
</tr>
<tr>
<td></td>
<td>35-7 Literature Cited</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Nitrogen—Isotope-Ratio Analysis</td>
<td>36 Nitrogen—Isotope-Ratio Analysis</td>
</tr>
<tr>
<td></td>
<td>ROLAND D. HAUCK</td>
<td>36-1 Introduction</td>
</tr>
<tr>
<td></td>
<td>36-2 General Principles</td>
<td></td>
</tr>
<tr>
<td></td>
<td>36-3 Conversion of Labeled Nitrogen to Ammonium</td>
<td></td>
</tr>
<tr>
<td></td>
<td>36-4 Conversion of Ammonium to Dinitrogen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>36-5 Direct Conversion of Nitrogen Forms Other Than Ammonium to Dinitrogen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>36-6 Determination of Isotopic Composition of Dinitrogen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>36-7 Determination of Isotopic Composition to Nitrogen Gases in Air</td>
<td></td>
</tr>
<tr>
<td></td>
<td>36-8 Literature Cited</td>
<td></td>
</tr>
</tbody>
</table>
CONTENTS

37 Cultural Methods for Soil Microorganisms
A. G. WOLLUM II

37-1 Introduction .. 781
37-2 Principles .. 782
37-3 Collection/Processing of Samples 783
37-4 Preparation of Dilutions 785
37-5 Preparation of Plates or Tubes 787
37-6 Incubation and Counting 789
37-7 Calculation of Results 790
37-8 Modifications .. 792
37-9 Conclusions .. 801
37-10 Literature Cited ... 801

38 Microscopic Methods for Soil Microorganisms
E. L. SCHMIDT AND E. A. PAUL

38-1 Introduction ... 803
38-2 Enumeration of Bacteria by Light Microscopy 807
38-3 Enumeration of Bacteria by Fluorescence Microscopy 809
38-4 Enumeration of Bacteria by Fluorescence Microscopy:
Alternative Procedure .. 812
38-5 Literature Cited ... 813

39 Most Probable Number Method for Microbial Populations
M. ALEXANDER

39-1 Introduction ... 815
39-2 Principles .. 815
39-3 Method ... 817
39-4 Literature Cited ... 820

40 Microbial Biomass
DENNIS PARKINSON AND ELDOR A. PAUL

40-1 Introduction ... 821
40-2 Physiological Methods 822
40-3 Chemical Methods .. 826
40-4 Comparison of Methods 829
40-5 Literature Cited ... 829

41 Soil Respiration
JOHN P. E. ANDERSON

41-1 Introduction ... 831
41-2 Detection, Instrumentation, and General Principles 834
41-3 Field Methods .. 838
41-4 Laboratory Methods .. 852
41-5 Literature Cited ... 866
CONTENTS

42 Composition of Soil Atmospheres

J. M. BREMNER AND A. M. BLACKMER

42-1 Introduction .. 873
42-2 Methods for Sampling Soil Atmospheres 877
42-3 Determination of Major Constituents of Soil Atmospheres ... 878
42-4 Determination of Minor Constituents of Soil Atmospheres ... 887
42-5 Literature Cited ... 895

43 Soil Enzymes

M. A. TABATABAI

43-1 General Introduction .. 903
43-2 Principles .. 905
43-3 Assay of Enzymes in Soils 915
43-4 Literature Cited ... 943

44 Filamentous Fungi

DENNIS PARKINSON

44-1 Introduction .. 949
44-2 Qualitative Studies: Isolation Methods 950
44-3 Quantitative Methods 961
44-4 Literature Cited ... 966

45 Actinomycetes

S. T. WILLIAMS AND E. M. H. WELLINGTON

45-1 General Introduction .. 969
45-2 Isolation and Enumeration 970
45-3 Detection of Actinomycetes with Selected Hydrolytic Abilities 977
45-4 Detection of Growth in Soil 980
45-5 Identification of Isolates 981
45-6 Preservation of Isolates 984
45-7 Literature Cited ... 985

46 Anaerobic Bacteria and Processes

HEINRICH F. KASPAR AND JAMES M. TIEDJE

46-1 Introduction .. 989
46-2 Principles .. 990
46-3 Methods for Removal of Oxygen 991
46-4 Methods for Reduction of Media 995
46-5 Redox Indicators .. 997
46-6 Culture Methods .. 998
46-7 Enumeration Methods 1001
46-8 Simple Method to Carry out Anaerobic Incubations of Soil 1007
46-9 Literature Cited ... 1008
CONTENTS

47 Denitrification

JAMES M. TIEDJE

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>47-1 Introduction</td>
<td>1011</td>
</tr>
<tr>
<td>47-2 Principles</td>
<td>1013</td>
</tr>
<tr>
<td>47-3 Method</td>
<td>1018</td>
</tr>
<tr>
<td>47-4 Literature Cited</td>
<td>1024</td>
</tr>
</tbody>
</table>

48 Nitrifying Bacteria

E. L. SCHMIDT AND L. W. BELSER

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>48-1 General Introduction</td>
<td>1027</td>
</tr>
<tr>
<td>48-2 Enumeration by Most Probable Number</td>
<td>1029</td>
</tr>
<tr>
<td>48-3 Diversity of Nitrifiers</td>
<td>1032</td>
</tr>
<tr>
<td>48-4 Isolation of Nitrifiers</td>
<td>1033</td>
</tr>
<tr>
<td>48-5 Maintenance of Pure Cultures</td>
<td>1036</td>
</tr>
<tr>
<td>48-6 Nitrifying Activity in Soil</td>
<td>1037</td>
</tr>
<tr>
<td>48-7 Literature Cited</td>
<td>1041</td>
</tr>
</tbody>
</table>

49 Rhizobium

R. W. WEAVER AND L. R. FREDERICK

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>49-1 Introduction</td>
<td>1043</td>
</tr>
<tr>
<td>49-2 Cultivation</td>
<td>1044</td>
</tr>
<tr>
<td>49-3 Isolation from Nodules</td>
<td>1046</td>
</tr>
<tr>
<td>49-4 Maintenance of Cultures</td>
<td>1047</td>
</tr>
<tr>
<td>49-5 Enumeration of Rhizobia in Soil and Inoculants</td>
<td>1049</td>
</tr>
<tr>
<td>49-6 Nitrogen Fixation</td>
<td>1052</td>
</tr>
<tr>
<td>49-7 Acetylene Reduction</td>
<td>1055</td>
</tr>
<tr>
<td>49-8 Inoculation of Seed and Field Experimentation</td>
<td>1058</td>
</tr>
<tr>
<td>49-9 Strain Recognition</td>
<td>1062</td>
</tr>
<tr>
<td>49-10 Literature Cited</td>
<td>1067</td>
</tr>
</tbody>
</table>

50 Free-living Dinitrogen-fixing Bacteria

ROGER KNOWLES

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>50-1 Introduction</td>
<td>1071</td>
</tr>
<tr>
<td>50-2 Method for Acetylene Reduction Assay</td>
<td>1072</td>
</tr>
<tr>
<td>50-3 Methods for Azotobacteraceae</td>
<td>1076</td>
</tr>
<tr>
<td>50-4 Method for Spirillaceae</td>
<td>1078</td>
</tr>
<tr>
<td>50-5 Method for Methylo trophs</td>
<td>1079</td>
</tr>
<tr>
<td>50-6 Method for Hydrogen-utilizing Dinitrogen Fixers</td>
<td>1081</td>
</tr>
<tr>
<td>50-7 Methods for Enterobacteriaceae</td>
<td>1082</td>
</tr>
<tr>
<td>50-8 Method for Cyanobacteria</td>
<td>1085</td>
</tr>
<tr>
<td>50-9 Method for Photosynthetic Purple Nonsulfur Bacteria</td>
<td>1086</td>
</tr>
<tr>
<td>50-10 Method for Clostridia</td>
<td>1087</td>
</tr>
<tr>
<td>50-11 Method for Sulfate-reducing Bacteria</td>
<td>1089</td>
</tr>
<tr>
<td>50-12 Literature Cited</td>
<td>1090</td>
</tr>
</tbody>
</table>
Contents

51 Algae

Lora Mangum Shields

- **51-1 Introduction** ... 1093
- **51-2 Soil Block Method** .. 1094
- **51-3 Most Probable Number Method** 1096
- **51-4 Direct Microscopy** .. 1097
- **51-5 Acetylene Reduction Assay for Dinitrogen Fixation** 1099
- **51-6 Literature Cited** ... 1100

52 Protozoa

J. D. Stout, S. S. Bamforth, and J. D. Louise

- **52-1 Introduction** ... 1103
- **52-2 Culture Methods** ... 1105
- **52-3 Counting Methods** .. 1107
- **52-4 Microscopic Examination** 1115
- **52-5 Conclusions** .. 1117
- **52-6 Literature Cited** ... 1117

53 Nematodes

S. D. Van Gundy

- **53-1 Introduction** ... 1121
- **53-2 Baermann Technique** 1124
- **53-3 Cobb Sieving Technique** 1125
- **53-4 Centrifugal-Flotation Technique** 1126
- **53-5 Sugar-Flotation Technique** 1127
- **53-6 Counting, Killing, Fixing, and Mounting Nematodes** 1128
- **53-7 Literature Cited** ... 1129

54 Mites and Other Soil Microarthropods

Tyler A. Woolley

- **54-1 Introduction** ... 1131
- **54-2 Principles** .. 1131
- **54-3 Methods** .. 1133
- **54-4 Comments** ... 1140
- **54-5 Literature Cited** ... 1142

Subject Index

... .. 1143
It is truly fitting that Methods of Soil Analysis, Part 2, Second Edition be dedicated to Dr. Charles A. Black. Dr. Black was editor-in-chief of the 1965 Methods of Soil Analysis, Parts 1 and 2, one of the most successful and widely acclaimed of the Society's monograph series. His dedicated efforts were largely responsible for the overall high quality of the first edition of the monograph. It is also fitting to recognize Dr. Black for his contributions to research and teaching and for his current role as one of the chief spokespersons for agriculture.

Dr. Black was born 22 January 1916 in Lone Tree, Iowa. He received B.S. degrees in chemistry and soil science from Colorado State University in 1937, and the M.S. and Ph.D. degrees in soil fertility from Iowa State University in 1938 and 1942.

He began his professional career as a research fellow in the Department of Agronomy, Iowa State University in 1937, and in 1939 joined that faculty as instructor in soils. Except for service with the U.S. Navy during World War II, a visiting professorship at Cornell University in 1955–56, and a NSF Fellowship at UC-Davis in 1964–65, Dr. Black has remained at Iowa State. He retired as distinguished professor in 1979 to devote full time to his current duties with the Council for Agricultural Science and Technology (CAST).

Dr. Black's research and teaching career has had a major influence on the discipline of soil science, particularly soil fertility and soil chemistry. He has contributed much to our knowledge of phosphate reactions in soils, uptake by plants, and interpretation of yield curves. He is author or co-author of approximately 100 research papers, has written two editions of a widely used textbook entitled Soil-Plant Relationships, and several editions of a laboratory manual on soil chemistry. He has also served as associate editor for the SSSA Journal; as consulting editor for Soil Science, and as editor of more than 100 publications issued by CAST. He has served the ASA and SSSA as a member of numerous committees, as SSSA president in 1961, and as ASA president in 1971. He has received numerous awards and honors, including the ASA Soil Science Award (1957), ASA Fellow (1962), Fellow of the American Institute of Chemists (1969), Honorary Member of SSSA (1975) and ASA (1981), AAAS Fellow (1976), the Henry A. Wallace Award from Iowa State University for Distinguished Service to Agriculture (1981), and the Bouyoucos Soil Science Distinguished Career Award, SSSA (1981).

Dr. Black's critical and forthright evaluation of research findings, coupled with a warm personality and a dry sense of humor, have made him a much sought-after counselor by students and colleagues. His graduate level soil-plant relationship courses at Iowa State were especially popular. Those privileged to learn under Dr.

Charles A. Black
Black gained the type of knowledge and philosophy which has served them well in their varied careers.

Dr. Black's career took on a new dimension in 1970 when, largely under his direction, CAST was developed. He was the president of CAST in 1973 and since then has served as the executive vice-president of this innovative, independent association of agricultural science societies.

He is providing invaluable service to the community of food and agricultural scientists through his dedicated efforts on the behalf of CAST. Through the Council, the scientific societies and the scientists they represent, can make an input into the development of national policies on food and agriculture by supplying scientific information to decision makers and opinion leaders.

GENERAL FOREWORD

Methods of Soil Analysis, Part 2—Chemical and Microbiological Properties, Agronomy Monograph 9, is the second edition and thus replaces the original Part 2 published in 1965. This new publication incorporates significant advances made in this field during the past 17 years and is an important addition to the Agronomy monograph series, which was started in 1949. The first six volumes of the series were published by Academic Press, Inc. In 1957 the American Society of Agronomy took over publication of its monographs and continued to be the sole publisher through the 18th monograph published in 1977. The Crop Science Society of America and the Soil Science Society of America were invited to participate in the series and have been copublishers since 1977. The monographs represent an important and continuing effort of the associated societies, their officers, and the 11,700 members located in 100 countries to provide mankind worldwide with the most recent information available.

On behalf of the members of the associated societies and myself, I sincerely thank A. L. Page, editor, and associate editors R. H. Miller and D. R. Keeney for their diligent work, the many authors for their contributions, managing editor R. C. Dinauer for his diligent efforts in the production of this monograph, and all others who have contributed directly or indirectly to the accomplishment of this publication.

August 1982

DAVID M. KRAL
Acting Executive Vice President
ASA-CSSA-SSSA

FOREWORD

Soil is one of the most important of our natural resources. It supports and provides nutrients for the plants and animals that provide our food, fiber, and shelter. It is also the receptacle for much of our waste material, helping to correct and often hide many of our mistakes and oversights. If managed properly, the soil provides protection for our environment.
The soil is also nonrenewable for all practical purposes, highly variable, and complex, especially from a chemical and biological standpoint. It is essential that we have the best possible understanding of the nature and properties of our soils if we are to make the most efficient use of them for food and fiber production, and at the same time preserve them for future generations. This understanding has been greatly enhanced in the past, through the use of new and improved analytical procedures. Yet, we have a great deal to learn, and new procedures based on the use of modern technology and insights gained from past experience are continually emerging.

The second edition of the book, *Methods of Soil Analysis, Part 2, Chemical and Microbiological Properties*, provides a timely and needed update of the new analytical procedures available today. The authors represent the many facets of the chemistry and biology of soils and are among the most highly respected and knowledgeable soil scientists.

On behalf of ASA and SSSA we want to express our appreciation to the organizing and editorial committees, the authors and reviewers, and the ASA Headquarters staff for the time and effort they have spent in making this publication possible.

September 1982

ROBERT G. GAST

C. O. GARDNER

president

president

Soil Science Society of America

American Society of Agronomy

PREFACE

The first edition of *Methods of Soil Analysis, Part 2, Chemical and Microbiological Properties* was published in 1965. The purpose of the book was to provide a comprehensive and authoritative treatise on laboratory methods for the chemical and microbiological characterization of soils. The book was extremely well received and has been recognized internationally as the standard reference for the methods of soil analysis. More than 12,300 copies have been sold worldwide. Dr. C. A. Black, to whom the second edition is dedicated, edited the first edition.

Since 1965 the technological advances in analytical instrumentation and methodology have been substantial. Additionally, the widespread public concern over environmental quality created a need to expand the coverage to include methods for elements and constituents not contained in the first edition. Recognizing these needs and following a recommendation by the ASA Monographs Committee, the Executive Committee of ASA approved publication of this second edition.

In a system as complex as soil, and a discipline that contains such diverse constituents, it is impossible for any one individual to prepare a text of the type needed. The editorial committee, therefore, selected those considered to be most knowledgeable to prepare chapters in their subject matter area specialty. The book consists of 54 chapters prepared by 73 authors and co-authors. All chapters were reviewed by at least two members of the editorial committee and one or more outside reviewers.
Members of the editorial committee who participated in the planning and development of the book are as follows:

A. L. Page, chairperson, University of California, Riverside, CA
D. E. Baker, The Pennsylvania State University, University Park, PA
R. Ellis, Jr., Kansas State University, Manhattan, KS
D. R. Keeney, University of Wisconsin, Madison, WI
R. H. Miller, North Carolina State University, Raleigh, NC
J. D. Rhoades, U.S. Salinity Laboratory, Riverside, CA

As with the first edition, the intent of this second edition is to guide the reader through virtually all chemical and microbiological methods currently in use to characterize soils. Seven chapters deal with principles, methods, and applications of various types of instrumentation. Separate chapters are devoted to general soil chemical properties such as cation exchange capacity, exchangeable cations, soluble salts, carbonate and gypsum, soil pH, and lime requirement. Methods for the determination of soluble, adsorbed, and total concentrations of 30 elements, as well as information on their sources and sinks in soil, and indices of plant availability and phytotoxicity are included. Five chapters are devoted to methods to determine the various forms of nitrogen in soil, including total, organic, inorganic, urea, and methods for isotope ratio analysis.

Methods for characterization and enumeration of specific groups of soil microorganisms, as well as methods for analyzing soil microbiological activity, are extensively covered in this edition. Chapters that deal with general cultural, microscopic, and most probable number of methods for enumerating soil microorganisms, as well as coverage of specific groups of soil organisms such as fungi, actinomycetes, anaerobic bacteria, nitrifying bacteria, Rhizobium, free-living nitrogen fixing organisms, algae, protozoa, nematodes, mites, and other soil arthropods, are included. Other chapters cover methods for measuring microbial biomass, soil respiration, activity of soil enzymes, and the characterization of soil organic matter.

The editorial committee expresses its appreciation to the many anonymous reviewers who provided their time and talents to aid in maintaining the quality of the monograph. Special thanks are due R. C. Dinauer and Kristine Gates of the ASA Headquarters staff for their many, most helpful suggestions pertaining to format, indexing, etc., and for their conscientious and painstaking job of style editing the final copy for publication.

We wish to pay a special tribute to Roscoe Ellis, Jr., member of the editorial committee and co-author of Chapter 17, and to John B. Stout one of the co-authors of Chapter 52. Their untimely deaths occurred while the monograph was in progress. The assistance of G. W. Yeates in the editing and indexing of Dr. Stout’s chapter is gratefully acknowledged.

September 1982

A. L. PAGE, editor-in-chief
University of California, Riverside, California

R. H. MILLER, associate editor
North Carolina State University, Raleigh, North Carolina

D. R. KEENEY, associate editor
University of Wisconsin, Madison, Wisconsin
CONTRIBUTORS

D. C. Adriano
Associate Professor, Savannah River Ecology Laboratory, Aiken, South Carolina

Martin Alexander
Professor, Department of Agronomy, Cornell University, Ithaca, New York

Michael C. Amacher
Assistant Professor of Soil and Environmental Chemistry, Department of Agronomy, The Pennsylvania State University, University Park, Pennsylvania

John P. E. Anderson
Dr., Bayer AG, Sparte Pflanzenschutz, Anwendungstechnik, Chemische Entwicklung, Institut für Ökobiologie, Bayerwerk, West Germany

Dale E. Baker
Professor of Soil Chemistry, Department of Agronomy, The Pennsylvania State University, University Park, Pennsylvania

Stuart S. Bamforth
Dr., Newcomb College, Tulane University, New Orleans, Louisiana

Richard I. Barnhisel
Professor of Agronomy and Geology, Department of Agronomy, University of Kentucky, Lexington, Kentucky

Lawrence W. Belser
Research Microbiologist, Cawthron Institute, Nelson, New Zealand

Paul M. Bertsch
Research Associate, Soil Chemistry, Department of Agronomy, University of Kentucky, Lexington, Kentucky

Jeff R. Bettany
Associate Professor, Department of Soil Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada

Frank T. Bingham
Professor of Soil Science, Department of Soil and Environmental Sciences, University of California, Riverside, California

Alfred M. Blackmer
Assistant Professor of Agronomy, Department of Agronomy, Iowa State University, Ames, Iowa

John M. Bremner
Professor of Agronomy and Biochemistry and Curtiss Distinguished Professor in Agriculture, Department of Agronomy, Iowa State University, Ames, Iowa

Richard G. Burau
Professor of Soil Science, Department of Land, Air, and Water Resources, University of California, Davis, California

Earle E. Cary

Harvey E. Doner
Professor of Soil Chemistry, Department of Plant and Soil Biology, University of California, Berkeley, California

Roscoe Ellis, Jr.
Professor of Soil Chemistry, Department of Agronomy, Kansas State University, Manhattan, Kansas. Deceased 9 Sept. 1982

Lloyd R. Frederick
Senior Soil Microbiology Specialist, U.S. Agency for International Development, Washington, D.C.

Robert P. Gambrell
Associate Professor, Laboratory for Wetland Soils and Sediments, Center for Wetland Resources, Louisiana State University, Baton Rouge, Louisiana

T. J. Ganje
Staff Research Associate, Department of Soil and Environmental Sciences, University of California, Riverside, California
C. Thomas Hallmark
Associate Professor of Pedology, Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas

John J. Hassett
Professor of Soils, Department of Agronomy, University of Illinois, Urbana, Illinois

Roland D. Hauck
Research Soil Chemist, National Fertilizer Development Center, Tennessee Valley Authority, Muscle Shoals, Alabama

Walter R. Heald
Soil Scientist, Northeast Watershed Research Center, Agricultural Research Service, U.S. Department of Agriculture, University Park, Pennsylvania (now retired)

Philip A. Helmke
Professor, Department of Soil Science, University of Wisconsin, Madison, Wisconsin

Marion L. Jackson
Franklin Hiram King Professor of Soil Science, Department of Soil Science, University of Wisconsin, Madison, Wisconsin

Angela A. Jones
Dr., Department of Soil Science, University of Reading, Reading, England

J. Benton Jones, Jr.
Professor, Department of Horticulture, University of Georgia, Athens, Georgia

Heinrich F. Kaspar
Research Microbiologist, Cawthron Institute, Nelson, New Zealand. Formerly Research Associate, Department of Crop and Soil Sciences, Michigan State University, East Lansing, Michigan

Dennis R. Keeney
Professor and Chairman, Department of Soil Science, University of Wisconsin, Madison, Wisconsin

Roger Knowles
Professor, Department of Microbiology, Macdonald Campus of McGill University, Ste. Anne de Bellevue, Quebec, Canada

Delno Knudsen
Associate Professor of Agronomy, Department of Agronomy, University of Nebraska, Lincoln, Nebraska

Joe Kubota

Les E. Lanyon
Assistant Professor of Soil Fertility, Department of Agronomy, The Pennsylvania State University, University Park, Pennsylvania

Chin Huat Lim
Agronomist, Jalan, Fatimah, Bata, Jahor, Malasia. Formerly Research Assistant, Department of Soil Science, University of Wisconsin, Madison, Wisconsin

J. Daniel Lousier
Forest Ecologist, Research Branch, Ministry of Forests, Victoria, British Columbia, Canada. Formerly with the Land Use Planning Advisory Team, MacMillan Bloedel Limited, Nanaimo, British Columbia, Canada

Eugene O. McLean
Professor of Agronomy, Department of Agronomy, The Ohio State University, Columbus, Ohio

Charlene S. Mulvaney
Research Assistant, Department of Agronomy, University of Illinois, Urbana, Illinois. Formerly Research Associate, Department of Agronomy, Iowa State University, Ames, Iowa

Darrell W. Nelson
Professor of Agronomy, Department of Agronomy, Purdue University, West Lafayette, Indiana

Reuben E. Nelson
Research Soil Scientist, National Soil Survey Laboratory, Soil Conservation Service, U.S. Department of Agriculture, Lincoln, Nebraska. Now retired in Riverside, California
CONTRIBUTORS

Sterling R. Olsen
Soil Scientist, Agricultural Research Service, U.S. Department of Agriculture, Department of Agronomy, Colorado State University, Fort Collins, Colorado

Raymond V. Olson
Professor of Agronomy, Department of Agronomy, Kansas State University, Manhattan, Kansas

Dennis Parkinson
Head, Department of Biology, University of Calgary, Calgary, Alberta, Canada

William H. Patrick, Jr.
Boyd Professor, Laboratory for Wetland Soils and Sediments, Center for Wetland Resources, Louisiana State University, Baton Rouge, Louisiana

Eldor A. Paul
Professor and Chairman, Department of Plant and Soil Biology, University of California, Berkeley, California

Gary A. Peterson
Professor of Agronomy, Department of Agronomy, University of Nebraska, Lincoln, Nebraska

William M. Peterson
Applications Group Manager, EG&G Princeton Applied Research Corporation, Princeton, New Jersey

P. F. Pratt
Professor of Soil Science, Department of Soil and Environmental Sciences, University of California, Riverside, California

D. William Rains
Professor of Agronomy, Department of Agronomy and Range Science, University of California, Davis, California

H. M. Reisenauer
Professor of Soil Science, Department of Land, Air, and Water Resources, University of California, Davis, California

James D. Rhoades
Research Soil Scientist, U.S. Salinity Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Riverside, California

Edwin L. Schmidt
Professor, Department of Soil Science, University of Minnesota, St. Paul, Minnesota

Morris Schnitzer
Program Leader, Soil Organic Matter, Chemistry and Biology Research Institute, Agriculture Canada, Ottawa, Ontario, Canada

Lora Mangum Shields
Professor (now Visiting Professor), New Mexico Highlands University, Las Vegas, New Mexico, and Navajo Community College, Shiprock, New Mexico

Neil E. Smeck
Professor, Department of Agronomy, The Ohio State University, Columbus, Ohio

Parviz N. Soltanpour
Professor, Soil Testing Laboratory, Colorado State University, Fort Collins, Colorado

Lee E. Sommers
Professor, Department of Agronomy, Purdue University, West Lafayette, Indiana

Frank J. Stevenson
Professor of Soil Chemistry, Department of Agronomy, University of Illinois, Urbana, Illinois

John W. B. Stewart
Professor of Soil Science, Department of Soil Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada

John D. Stout
Dr., Soil Bureau, Department of Scientific and Industrial Research, Lower Hutt, New Zealand. Deceased 3 March 1982

Jimmy J. Street
Assistant Professor of Soil Chemistry, Soil Science Department, University of Florida, Gainesville, Florida
CONTRIBUTORS

Norman H. Suhr
Associate Professor of Geochemistry, Department of Geosciences, The Pennsylvania State University, University Park, Pennsylvania

M. Ali Tabatabai
Professor (Soil Chemistry and Biochemistry), Department of Agronomy, Iowa State University, Ames, Iowa

Grant W. Thomas
Professor, Department of Agronomy, University of Kentucky, Lexington, Kentucky

James M. Tiedje
Professor of Soil Science, Department of Crop and Soil Sciences, Michigan State University, East Lansing, Michigan

Seymour D. Van Gundy
Professor of Nematology, Department of Nematology, University of California, Riverside, California

Richard W. Weaver
Professor, Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas

Elizabeth M. H. Wellington
Dr., Department of Biology, Liverpool Polytechnic, Liverpool, England. Formerly with the Department of Botany, University of Liverpool, Liverpool, England

Larry P. Wilding
Professor of Pedology, Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas

S. T. Williams
Dr., Department of Botany, University of Liverpool, Liverpool, England

A.G. Wollum
Professor of Soil Microbiology, Department of Soil Science, North Carolina State University, Raleigh, North Carolina

Tyler A. Woolley
Dr., Department of Zoology and Entomology, Colorado State University, Fort Collins, Colorado

Stephen M. Workman
Research Associate, Department of Agronomy, Colorado State University, Soil Testing Laboratory, Fort Collins, Colorado