METHODS OF SOIL ANALYSIS

Part 1
AGRONOMY
A Series of Monographs Published by the
AMERICAN SOCIETY OF AGRONOMY

General Editor, Monographs 1 to 6, A. G. Norman

1 C. EDMUND MARSHALL: The Colloid Chemistry of the Silicate Minerals, 1949
2 BYRON T. SHAW, Editor: Soil Physical Conditions and Plant Growth, 1952
3 K. D. JACOB, Editor: Fertilizer Technology and Resources in the United States, 1953
4 W. H. PIERRE and A. G. NORMAN, Editors: Soil and Fertilizer Phosphate in Crop Nutrition, 1953
5 GEORGE F. SPRAGUE, Editor: Corn and Corn Improvement, 1955
6 J. LEVITT: The Hardiness of Plants, 1956
7 JAMES N. LUTHIN, Editor: Drainage of Agricultural Lands, 1957
 General Editor, D. E. GREGG
8 FRANKLIN A. COFFMAN, Editor: Oats and Oat Improvement, 1961
 Managing Editor, H. L. HAMILTON
9 C. A. BLACK, Editor-in-Chief, and D. D. EVANS, J. L. WHITE, L. E. ENSMINGER, and F. E. CLARK, Associate Editors: Methods of Soil Analysis, 1965
 Part 1—Physical and Mineralogical Properties, Including Statistics of Measurement and Sampling
 Part 2—Chemical and Microbiological Properties
 Managing Editor, R. C. DINAUER

Monographs 1 through 6, published by Academic Press, Inc., should be ordered from:

 Academic Press, Inc.
 111 Fifth Avenue
 New York, New York 10003

Monographs 7, 8, and 9, published by the American Society of Agronomy, should be ordered from:

American Society of Agronomy
677 South Segoe Road
Madison, Wisconsin, USA 53711
GENERAL FOREWORD

AGRONOMY—An ASA Monograph Series

The need for comprehensive treatments of specific subject matter areas was realized by members of the American Society of Agronomy several years ago. As a result, the first monograph of a series entitled "Agronomy" was published in 1949. Dr. A. G. Norman, an eminent member of the Society, was appointed general editor and served in this capacity for the first six publications. Since the Society, a nonprofit organization, was not initially able to finance the project, arrangements were made with Academic Press, Inc., of New York to publish the monographs. This procedure was used for the first six monographs. This fact explains why these six publications are not available at the Society Headquarters Office but instead from Academic Press, Inc.

By 1957, the Society had developed considerably and had in operation a Headquarters Office with a competent editorial staff which made it possible to editorially manage its publications. Also, the financial stability of the Society now enabled it to pursue independently the monograph project, including complete financing and publishing of the series.

The ASA now presents its ninth contribution, with several more in preparation. In contrast to the first eight "volumes," the ninth and succeeding issues will be referred to as "numbers." As reported in the Preface, the project which was to become this monograph on Methods of Soil Analysis was conceived and initiated in 1957 by the Soil Science Society of America. During the course of development of the project it became apparent that the publication would be a particularly large and expensive one. The American Society of Agronomy had in its organization a Monographs Committee to which was assigned the responsibility to decide on the appropriateness of subject-matter for ASA monographs while at the same time taking note of the financial obligations related to this project. With the agreement of the SSSA, the Monographs Committee recommended the sponsorship and complete financing of this monograph to the ASA. Approval to proceed was given by the American Society of Agronomy.

It may interest readers to know that members of the SSSA are members of the ASA and that members of the Crop Science Society of America are also members of the ASA. The three societies, while administratively separate, autonomous, and individually incorporated organizations in Wisconsin, are closely associated, work harmoniously together, and share a Headquarters Office and staff in Madison, Wisconsin. The readiness of the ASA to sponsor a project initiated and successfully carried through by an SSSA committee, the members of which are also ASA members, is a further indication of the desirability and practicality of the existing favorable inter-relationship among these associated societies.

December 1964

MATTHIAS STELLY
Executive Secretary-Treasurer
American Society of Agronomy
Crop Science Society of America
Soil Science Society of America
Cooperation on a project like this monograph on soil analysis is appropriate for the American Society of Agronomy and the American Society for Testing and Materials. The American Society of Agronomy has primary concern for efficient agricultural production while ASTM interest covers standards and test methods used in engineering and industrial applications. Numerous soil characteristics are significant and important to both, and both societies subscribe to full use of applicable science in making soil of maximum benefit to man.

Historically the processes of testing and analyzing soil have relied heavily on standardized apparatus and standardized procedures. With a complex, heterogeneous and reactive material like soil, we have been fortunate when the purpose of a measurement has been sufficiently understood that a realistic and useful testing procedure could be devised.

As knowledge increases of the components, principles and mechanisms represented in soil, soil scientists can deal increasingly with properties that can be defined, ideally, in such a way that measured values are independent of apparatus or method and can be expressed in standard units. There are some who would restrict the technical meaning of the term “property” to such “qualities” of matter. For soil it is not always possible to define such properties that will serve our needs. The reader will be interested to see how far we have progressed in this direction.

For ASTM, standardization of specifications and methods of testing is an important consideration. Even though there are properties for which different methods may yield similar results, the ultimate objective would be to establish a single standard method.

Skill is required in the definition of useful soil properties, in devising suitable measuring methods and in making the determinations. It is the purpose of this intersociety monograph to assemble and disseminate these skills for the analysis of soil. We are much indebted to the Editor, to his staff, and to the many contributing authors.

December 1964

Lorenzo A. Richards, President
American Society of Agronomy

Charles L. Kent, President
American Society for Testing and Materials
PREFACE

The need for authoritative information on soil analysis is shared by most soil scientists, whether or not they are actively engaged personally in making analyses. Comprehensive and authoritative coverage of a range of subject matter as great as that of soil analysis, however, is hardly possible for a single individual and may be accomplished more readily by cooperation of specialists in the different areas of work. This monograph is a result of the cooperative endeavor of many specialists.

In January 1957, L. B. Nelson, then president of the Soil Science Society of America, appointed a committee to study and recommend whether or not the SSSA should prepare a book on methods of soil analysis and to consider the fields to be covered and the method of organization, selection of methods, and editing. This committee included W. H. Gardner, E. R. Graham, J. J. Hanway, M. L. Jackson, R. F. Reitemeier, R. L. Starkey, and L. V. Wilcox, with C. I. Rich as chairman. The committee recommended that the SSSA prepare such a book. The committee recommended further that the standing committees on methods of soil analysis already existing in the Society, with the addition of a committee on microbiological properties, be given the responsibility of selecting and editing the methods; and that the chairmen of these committees, together with an individual elected by them to be the editor-in-chief, should comprise the editorial board. The recommendations were approved by the executive subcommittee of the SSSA in August 1957 and by the entire executive committee at the annual meeting held in November 1957 in Atlanta, Georgia.

At the same time a parallel and independent development was taking place in the American Society for Testing and Materials. ASTM Committee D-18 on Soils and Rocks for Engineering Purposes, Subcommittee R-6, with the late D. T. Davidson as chairman, was developing plans for a monograph on methods of soil analysis to supplement the methods of tests already published by ASTM. Because the monograph project of the Soil Science Society of America was further advanced than that of the American Society for Testing and Materials when the duplication of efforts was discovered, the ASTM committee offered their full support and cooperation to the SSSA in completing the project.

Contact was then made with the Monographs Committee of the American Society of Agronomy to determine whether the proposed publication
would be suitable as a number in the series of monographs sponsored by the ASA; and contact was made with the American Society for Testing and Materials to determine whether the ASTM wished to join with the ASA in sponsorship. Approval was obtained, and work on the monograph was completed under the supervision of the SSSA committees and editorial board, with the ASA and ASTM serving as joint sponsors of the publication.

The members of the SSSA and ASTM committees who participated in development of this monograph are as follows:

Soil Science Society of America
Committees on Soil Analysis and Measurement

PHYSICAL MEASUREMENT

D. D. Evans, Chairman, University of Arizona, Tucson, Ariz.
D. M. Anderson, Cold Regions Research Laboratory, U. S. Army, Hanover, N. H.
G. R. Blake, University of Minnesota, St. Paul, Minn.
R. R. Bruce, ARS, USDA, and Mississippi State University, State College, Miss.
W. H. Gardner, Washington State University, Pullman, Wash.
W. R. Gardner, ARS, USDA, U. S. Salinity Laboratory, Riverside, Calif.
V. C. Jamison, ARS, USDA, Columbia, Mo.
D. B. Peters, ARS, USDA, and University of Illinois, Urbana, Ill.
J. S. Robins, ARS, USDA, Boise, Idaho

SOIL MINERAL ANALYSIS

J. L. White, Chairman, Purdue University, Lafayette, Ind.
I. Barshad, University of California, Berkeley, Calif.
A. H. Beavers, University of Illinois, Urbana, Ill.
G. W. Kunze, Texas A & M University, College Station, Tex.
M. M. Mortland, Michigan State University, East Lansing, Mich.
R. C. Vandenbergheuvel, SCS, USDA, Soil Survey Laboratory, Beltsville, Md.
L. D. Whittig, University of California, Davis, Calif.

CHEMICAL ANALYSIS

L. E. Ensminger, Chairman, Auburn University, Auburn, Ala.
H. D. Chapman, University of California, Riverside, Calif.
B. N. Driskell, Denham Laboratory, University of Alabama, Tuscaloosa, Ala.
M. E. Harward, Oregon State University, Corvallis, Oregon
Immediately following approval of the project by the SSSA, the committee on physical analysis, then under the chairmanship of W. H. Gardner, prepared an outline of subject matter for the portion of the monograph to deal with physical properties. The other committees on soil analysis soon prepared outlines for their respective areas, and the individual outlines were organized into an over-all outline by the editorial board.
Authors for individual sections were selected by the standing committees, and contacts were made by chairmen of these committees. Authors were selected on the basis of their special knowledge of the subject on which they were asked to write, and the choice of methods to be described was left to them. In some instances authors include several methods for making a particular measurement and, when so, usually provide supplementary information to aid the reader in deciding which method best suits his purpose. Thus, with the exception of some ASTM methods, the methods described have not been included because of any specific official action of the Soil Science Society of America, the American Society of Agronomy, or the American Society for Testing and Materials; hence, they should not be considered to be standard or official methods of any of these Societies.

Most of the sections deal with methods of soil analysis, as the title implies. The few that do not have been included because the methods and related information they contain are of importance to people working with soils and frequently are needed by them.

Although a monograph entitled methods of analysis might be strictly a set of directions for performing the operations required to make the measurements, the editorial board was in unanimous agreement from the beginning that this style of presentation would not fulfill the total need of readers for information about the methods. Authors, therefore, were asked to include not only the specific directions for the measurements but also the principles of the method, comments on such matters as limitations, pitfalls, and precision, and reference to sources in the literature to which the reader might go for further study.

The standard pattern of treatment is followed with most subjects, but it is inapplicable for a few; and, in such instances, departures from the standard format are made. In the subject of analysis of nitrogenous gases, for example, the authors do not consider that proven methods are available; accordingly, they give no methods in detail but instead provide an analysis of the literature to serve as a basis for research to develop suitable methods.

An attempt has been made to produce a treatise that is self-sufficient, so that a reader with good background knowledge of science can obtain what he needs to know of the theory and practice without having to consult other sources, which might not be readily available. This objective has been accomplished to different degrees in the different sections. In some, the breadth of material is so great that a considerable compromise has been necessary. For example, in the subject of petrographic methods, standard techniques may be found in books on optical mineralogy. Be-
cause the material is so extensive, the author does not attempt to repeat it in the form of specific directions. Rather, he confines his remarks principally to the special aspects of petrographic methods that have to do with soils, and he makes reference to sources in the literature where the specific directions may be obtained.

Considerable thought was given to the subject of indexes of availability of plant nutrients. From the standpoint of numbers of analyses performed, such measurements undoubtedly are of first importance. Nevertheless, measurements on soils to obtain indexes of availability of plant nutrients have an empirical aspect that is not so generally present in measurements of other properties. Moreover, the number of methods in use is large, and there is relatively little standardization among different laboratories. Because it was obvious that all methods found to be useful and perhaps satisfactory in one location or another could not be included, a compromise was made, and only a few methods have been given, again at the discretion of the authors.

Manuscripts submitted by authors were reviewed by the committee chairman or by one or more other persons (usually members of the SSSA committees on soil analysis) and sometimes by both, as well as the editor-in-chief; and the comments prepared were transmitted to the authors, as is customary with journal papers. Because a period of several years was required to complete the monograph, authors were given an opportunity, immediately prior to typesetting, to make revisions in their manuscripts. A number of authors made revisions and added new material at that time.

Throughout the monograph, frequent reference is made to specific commercial products and manufacturers. Such information is included for the convenience of the reader and should not be taken as an endorsement of the products or manufacturers to the exclusion of others by the Soil Science Society of America, the American Society of Agronomy, the American Society for Testing and Materials, or the author's employer.

Special recognition is due Oscar Kempthorne for the counsel and assistance he so generously provided in connection with the parts of the monograph dealing with statistics of measurement and sampling. Similar recognition is due Donald T. Davidson, late chairman of ASTM Subcommittee R-6 on physico-chemical properties of soils, and his successor, R. L. Handy, for their contributions to the sections of the monograph dealing with soil mechanics. Thanks are due L. Boersma for his work in an editorial capacity in the area of physical properties during the temporary absence of the chairman of the committee. Thanks are due P. F. Low for his advice on technical matters. And finally, appreciation must be ex-
pressed to the many anonymous reviewers who provided their time and talents to aid in maintaining high standards in the technical subject matter of the monograph and to R. C. Dinauer, of the Headquarters Staff of the American Society of Agronomy, for his painstaking job of editing the final copy for publication.

Ames, Iowa
September 1964

Editorial Board

C. A. BLACK, Iowa State University, Ames, Iowa
 Editor-in-Chief

D. D. EVANS, University of Arizona, Tucson, Arizona
 Associate Editor, Physical Properties

J. L. WHITE, Purdue University, Lafayette, Indiana
 Associate Editor, Mineralogical Properties

L. E. ENSMINGER, Auburn University, Auburn, Alabama
 Associate Editor, Chemical Properties

F. E. CLARK, Agricultural Research Service, U. S. Department of Agriculture, Fort Collins, Colorado
 Associate Editor, Microbiological Properties
CONTRIBUTORS

Fred Adams
Associate Professor of Soil Chemistry, Department of Agronomy and Soils, Auburn University, Auburn, Alabama

M. Alexander
Associate Professor of Soil Microbiology, Department of Agronomy, Cornell University, Ithaca, New York

L. E. Allison
Soil Scientist, U. S. Salinity Laboratory, Soil and Water Conservation Research Division, Agricultural Research Service, U. S. Department of Agriculture, Riverside, California

R. R. Allmaras
Soil Scientist, North Central Soil Conservation Research Center, Soil and Water Conservation Research Division, Agricultural Research Service, U. S. Department of Agriculture, Morris, Minnesota

Jack Altman
Assistant Professor of Botany and Plant Pathology, Department of Botany and Plant Pathology, Colorado State University, Fort Collins, Colorado

D. M. Anderson
Geologist, Materials Research Branch, U. S. Army Cold Regions Research and Engineering Laboratory, Hanover, New Hampshire

Edward S. Barber
Consulting Engineer, Soil Mechanics and Foundations, Arlington, Virginia

C. E. Bardsley
Associate Professor of Agronomy, South Carolina Agricultural Experiment Station, Clemson College, Clemson, South Carolina

Isaac Barshad
Soil Chemist, Department of Soils and Plant Nutrition, University of California, Berkeley, California

W. E. Beard
Chemist, Nitrogen Laboratory, Soil and Water Conservation Research Division, Agricultural Research Service, U. S. Department of Agriculture, Fort Collins, Colorado

Kenneth C. Beeson
Formerly Director, U. S. Plant, Soil and Nutrition Laboratory, Soil and Water Conservation Research Division, Agricultural Research Service, U. S. Department of Agriculture, Ithaca, New York (now with USAID to Sudan)
CONTRIBUTORS

Anson R. Bertrand Chief, Southern Branch, Soil and Water Conservation Research Division, Agricultural Research Service, U. S. Department of Agriculture, University of Georgia, Athens, Georgia

C. A. Black Professor of Soils, Department of Agronomy, Iowa State University, Ames, Iowa

G. R. Blake Professor of Soils, Department of Soils, University of Minnesota, St. Paul, Minnesota

L. Boersma Assistant Professor of Soils, Department of Soils, Oregon State University, Corvallis, Oregon

W. B. Bollen Professor of Soil Microbiology, Department of Microbiology, Oregon State University, Corvallis, Oregon

C. A. Bower Director, U. S. Salinity Laboratory, Soil and Water Conservation Research Division, Agricultural Research Service, U. S. Department of Agriculture, Riverside, California

J. M. Bremner Professor of Soils, Department of Agronomy, Iowa State University, Ames, Iowa

Robert F. Brewer Associate Chemist, Department of Soils and Plant Nutrition, University of California, Riverside, California

F. E. Broadbent Professor of Soil Microbiology, Department of Soils and Plant Nutrition, University of California, Davis, California

F. B. Cady Assistant Professor of Statistics, Department of Statistics, Iowa State University, Ames, Iowa

John G. Cady Soil Scientist, Soil Survey Laboratory, Soil Conservation Service, U. S. Department of Agriculture, Beltsville, Maryland
CONTRIBUTORS

L. D. Calvin
Professor of Statistics and Chairman, Department of Statistics, Oregon State University, Corvallis, Oregon

H. D. Chapman
Professor of Soils and Plant Nutrition, Department of Soils and Plant Nutrition, University of California, Riverside, California

H. H. Cheng
Research Associate, Department of Agronomy, Iowa State University, Ames, Iowa

W. S. Chepil
Research Investigations Leader, Soil Erosion, Soil and Water Conservation Research Division, Agricultural Research Service, U. S. Department of Agriculture, Kansas State University, Manhattan, Kansas

(deceased)

Francis E. Clark
Microbiologist, Nitrogen Laboratory, Soil and Water Conservation Research Division, Agricultural Research Service, U. S. Department of Agriculture, Fort Collins, Colorado

H. T. David
Professor of Statistics, Department of Statistics, Iowa State University, Ames, Iowa

Donald T. Davidson
Professor of Civil Engineering, Department of Civil Engineering, Iowa State University, Ames, Iowa

(deceased)

Paul R. Day
Professor of Soil Physics, Department of Soils and Plant Nutrition, University of California, Berkeley, California

L. A. Dean
Director, U. S. Soils Laboratory, Soil and Water Conservation Research Division, Agricultural Research Service, U. S. Department of Agriculture, Beltsville, Maryland

W. J. Dixon
Professor of Preventive Medicine, Health Sciences Computing Facilities, Department of Preventive Medicine, School of Medicine, University of California, Los Angeles, California

L. W. Durrell
Professor of Botany and Plant Pathology and Dean Emeritus, Department of Botany and Plant Pathology, Colorado State University, Fort Collins, Colorado

D. D. Evans
Professor, Department of Agricultural Chemistry and Soils, University of Arizona, Tucson, Arizona
CONTRIBUTORS

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earl J. Felt (deceased)</td>
<td>Manager of Transportation Development, Transportation Development Section, Research and Development Division, Portland Cement Association, Skokie, Illinois</td>
</tr>
<tr>
<td>L. O. Fine</td>
<td>Professor and Head, Department of Agronomy, South Dakota State University, Brookings, South Dakota</td>
</tr>
<tr>
<td>John G. A. Fiskell</td>
<td>Biochemist, Department of Soils, Agricultural Experiment Stations, University of Florida, Gainesville, Florida</td>
</tr>
<tr>
<td>Lloyd R. Frederick</td>
<td>Professor of Agronomy, Department of Agronomy, Iowa State University, Ames, Iowa</td>
</tr>
<tr>
<td>Walter H. Gardner</td>
<td>Professor of Soils, Department of Agronomy, Washington State University, Pullman, Washington</td>
</tr>
<tr>
<td>W. A. Goodwin</td>
<td>Research Professor, University of Tennessee, Knoxville Tennessee (now with Highway Research Board, National Cooperative Research Program, Washington, D. C.)</td>
</tr>
<tr>
<td>Walter R. Heald</td>
<td>Soil Scientist, U. S. Soils Laboratory, Soil and Water Conservation Research Division, Agricultural Research Service, U. S. Department of Agriculture, Beltsville, Maryland</td>
</tr>
<tr>
<td>W. G. Holtz</td>
<td>Assistant Chief Research Scientist, Soils Engineering Branch, Bureau of Reclamation, U. S. Department of Interior, Denver Federal Center, Denver, Colorado</td>
</tr>
<tr>
<td>M. L. Jackson</td>
<td>Professor of Soil Science, Department of Soil Science, University of Wisconsin, Madison, Wisconsin</td>
</tr>
<tr>
<td>C. M. Johnson</td>
<td>Chemist, Department of Soils and Plant Nutrition, University of California, Berkeley, California</td>
</tr>
<tr>
<td>Yoshinori Kanehiro</td>
<td>Assistant Professor of Soils, Agronomy and Soil Science Department, University of Hawaii, College of Tropical Agriculture, Honolulu, Hawaii</td>
</tr>
</tbody>
</table>
CONTRIBUTORS

W. D. Kemper
Soil Scientist and Associate Professor of Soils, Soil and Water Conservation Research Division, Agricultural Research Service, U. S. Department of Agriculture, and the Department of Agronomy, Colorado State University, Fort Collins, Colorado

Oscar Kempthorne
Professor of Statistics, Department of Statistics, Iowa State University, Ames, Iowa

Victor J. Kilmer
Soil Scientist, Office of Agricultural and Chemical Development, Tennessee Valley Authority, Wilson Dam, Alabama

J. A. Kittrick
Associate Professor of Soils, Department of Agronomy, Washington State University, Pullman, Washington

Arnold Klute
Professor of Soil Physics, Department of Agronomy, University of Illinois, Urbana, Illinois

Joe Kubota

George W. Kunze
Professor of Soil Mineralogy, Department of Soil and Crop Sciences, Texas A & M University, College Station, Texas

J. D. Lancaster
Professor of Soil Chemistry and Nitrogen, Mississippi State University, State College, Mississippi

V. A. Lazar

Torrence H. MacDonald

E. O. McLean
Professor of Agronomy, Department of Agronomy, Ohio State University and the Ohio Agricultural Experiment Station, Columbus, Ohio

Ronald G. Menzel
Soil Scientist, U. S. Soils Laboratory, Soil and Water Conservation Research Division, Agricultural Research Service, U. S. Department of Agriculture, Beltsville, Maryland
CONTRIBUTORS

J. D. Menzies Microbiologist, U. S. Soils Laboratory, Soil and Water Conservation Research Division, Agricultural Research Service, U. S. Department of Agriculture, Beltsville, Maryland

C. D. Moodie Professor of Soils, Department of Agronomy, Washington State University, Pullman, Washington

J. L. Mortensen Professor of Agronomy, Department of Agronomy, Ohio State University and the Ohio Agricultural Experiment Station, Columbus, Ohio

M. M. Mortland Professor of Soil Science, Department of Soil Science, Michigan State University, East Lansing, Michigan

R. V. Olson Professor and Head, Department of Agronomy, Kansas State University, Manhattan, Kansas

Michael Peech Professor of Soil Science, Department of Agronomy, Cornell University, Ithaca, New York

D. B. Peters Soil Scientist and Associate Professor, Soil and Water Conservation Research Division, Agricultural Research Service, U. S. Department of Agriculture, Department of Agronomy, University of Illinois, Urbana, Illinois

R. G. Petersen Associate Professor of Design and Analytical Experiments, Department of Experimental Statistics, North Carolina State of the University of North Carolina at Raleigh, North Carolina

P. F. Pratt Professor and Chemist, Department of Soils and Plant Nutrition, University of California, Riverside, California
Allan B. Prince
Professor of Soil and Water Science, Department of Soil and Water Science, University of New Hampshire, Durham, New Hampshire

R. C. Reeve
Research Investigations Leader, Soil and Water Conservation Research Division, Agricultural Research Service, U. S. Department of Agriculture, Ohio State University, Columbus, Ohio

H. M. Reisenauer
Associate Research Soil Scientist, M. Theodore Kearney Foundation of Soil Science, University of California, Davis, California

C. I. Rich
Professor of Agronomy, Department of Agronomy, Virginia Polytechnic Institute, Blacksburg, Virginia

L. A. Richards
Physicist, U. S. Salinity Laboratory, Soil and Water Conservation Research Division, Agricultural Research Service, U. S. Department of Agriculture, Riverside, California

S. J. Richards
Professor of Soil Physics, Department of Soils and Plant Nutrition, University of California, Riverside, California

J. S. Robins
Chief, Northwest Branch, Soil and Water Conservation Research Division, Agricultural Research Service, U. S. Department of Agriculture, Boise, Idaho

John R. Sallberg

G. Donald Sherman
Associate Director of the Agricultural Experiment Station and Senior Professor of Soils, University of Hawaii, College of Tropical Agriculture, Honolulu, Hawaii

George F. Sowers
Professor of Civil Engineering and Consulting Engineer, School of Civil Engineering, Georgia Institute of Technology, Atlanta, Georgia (also Law Engineering Testing Co., Atlanta, Georgia)

Alston W. Specht
Chemist, U. S. Soils Laboratory, Soil and Water Conservation Research Division, Agricultural Research Service, U. S. Department of Agriculture, Beltsville, Maryland

F. J. Stevenson
Professor of Soil Chemistry, Department of Agronomy, University of Illinois, Urbana, Illinois
G. Stotzky
Chairman, Research Department, Kitchawan Research Laboratory, Brooklyn Botanic Garden, Ossining, New York

P. R. Stout
Professor and Head, Department of Soils and Plant Nutrition, University of California, Davis, California

Sterling A. Taylor
Professor of Soil Physics, Department of Agronomy, Utah State University, Logan, Utah

R. C. Vanden Heuvel
Soil Scientist, Soil Survey Laboratory, Soil Conservation Service, U. S. Department of Agriculture, Beltsville, Maryland

Frank G. Viets, Jr.
Research Investigations Leader, Soil and Water Conservation Research Division, Agricultural Research Service, U. S. Department of Agriculture, Fort Collins, Colorado

James A. Vomocil
Associate Professor of Soil Physics, Department of Soils and Plant Nutrition, University of California, Davis, California

John I. Wear
Soil Chemist, Department of Agronomy and Soils, Auburn University, Auburn, Alabama

L. V. Wilcox
Formerly Assistant to Director, U. S. Salinity Laboratory, Soil and Water Conservation Research Division, Agricultural Research Service, U. S. Department of Agriculture, Riverside, California (now retired)

J. L. White
Professor of Agronomy, Department of Agronomy, Purdue University, Lafayette, Indiana

L. D. Whittig
Associate Soil Chemist, Department of Soils and Plant Nutrition, University of California, Davis, California

Tyler A. Woolley
Professor, Department of Zoology, Colorado State University, Fort Collins, Colorado
CONTENTS

Part 1

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOREWORD vii</td>
</tr>
<tr>
<td>PREFACE ix</td>
</tr>
<tr>
<td>CONTRIBUTORS xv</td>
</tr>
</tbody>
</table>

1 **Errors of Observation**

OSCAR KEMPTHORNE AND R. R. ALLMARAS

1-1 Introduction 1
1-2 Classification of Errors of Measurement 2
1-3 Scientific Validity of Measurements 4
1-4 Characterization of Variability 5
1-5 The Estimation of Precision 12
1-6 Precision of Derived Observations 15
1-7 The Roles of Bias and Precision 19
1-8 A Note on Terminology 21
1-9 Statistical Problems and Techniques in General 22
1-10 Literature Cited 23

2 **Bias**

R. R. ALLMARAS

2-1 General Introduction 24
2-2 Mathematical Forms of Bias and Their Consequences 25
2-3 Experimental Investigation of Bias 26
2-4 Practical Significance of Bias 39
2-5 Operational Control of Bias in Comparative Analyses 40
2-6 Literature Cited 42

3 **Extraneous Values**

W. J. DIXON

3-1 Introduction 43
3-2 The Problem of Estimation (Use of the Median and Range) 44
3-3 Confidence Limits as Estimates 46
3-4 The Problem of Designating Extraneous Values 47
3-5 Recommended Rules for Designating Extraneous Values 48
3-6 Recommended Rules for Estimation in the Presence of Extraneous Values 48
3-7 Literature Cited 49
CONTENTS, PART 1

4 Operator Variation

- **4-1 Introduction**
- **4-2 Example**
- **4-3 Causes**
- **4-4 Remedies**
- **4-5 Literature Cited.**

C. A. Black

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
</tr>
<tr>
<td>41</td>
</tr>
<tr>
<td>50</td>
</tr>
<tr>
<td>51</td>
</tr>
</tbody>
</table>

5 Sampling

- **5-1 Introduction**
- **5-2 Variation of Soils**
- **5-3 Sampling Plans**
- **5-4 Sources of Errors**
- **5-5 Subsampling**
- **5-6 Composite Samples**
- **5-7 Literature Cited**

R. G. Petersen and L. D. Calvin

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
</tr>
<tr>
<td>51</td>
</tr>
<tr>
<td>52</td>
</tr>
<tr>
<td>53</td>
</tr>
<tr>
<td>54</td>
</tr>
<tr>
<td>55</td>
</tr>
<tr>
<td>56</td>
</tr>
<tr>
<td>57</td>
</tr>
</tbody>
</table>

6 Calibration

- **6-1 The Nature of Calibration**
- **6-2 Statistical Aspects of Calibration**
- **6-3 Examples**
- **6-4 Literature Cited**

H. T. David and F. B. Cady

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>71</td>
</tr>
<tr>
<td>72</td>
</tr>
<tr>
<td>81</td>
</tr>
</tbody>
</table>

7 Water Content

- **7-1 General Introduction**
- **7-2 Direct Methods**
- **7-3 Indirect Methods**
- **7-4 Literature Cited**

Walter H. Gardner

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>82</td>
</tr>
<tr>
<td>83</td>
</tr>
<tr>
<td>98</td>
</tr>
<tr>
<td>125</td>
</tr>
</tbody>
</table>

8 Physical Condition of Water in Soil

- **8-1 General Introduction**
- **8-2 Water Retentivity of Soil at Specified Values of Matric Suction**
- **8-3 Freezing Point of Water in Soil**
- **8-4 Vapor Pressure of Water in Soil**
- **8-5 Literature Cited**

L. A. Richards

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
</tr>
<tr>
<td>131</td>
</tr>
<tr>
<td>137</td>
</tr>
<tr>
<td>140</td>
</tr>
<tr>
<td>151</td>
</tr>
</tbody>
</table>

9 Soil Suction Measurements With Tensiometers

- **9-1 Introduction**
- **9-2 Principles**
- **9-3 Method**
- **9-4 Applications**
- **9-5 Literature Cited**

S. J. Richards

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>153</td>
</tr>
<tr>
<td>154</td>
</tr>
<tr>
<td>155</td>
</tr>
<tr>
<td>160</td>
</tr>
<tr>
<td>163</td>
</tr>
</tbody>
</table>
CONTENTS, PART 1

10 Heat of Immersion

- **Introduction**
- **Principles**
- **Method**
- **Literature Cited**

By D. M. Anderson

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1</td>
<td>Introduction</td>
<td>164</td>
</tr>
<tr>
<td>10.2</td>
<td>Principles</td>
<td>166</td>
</tr>
<tr>
<td>10.3</td>
<td>Method</td>
<td>172</td>
</tr>
<tr>
<td>10.4</td>
<td>Literature Cited</td>
<td>179</td>
</tr>
</tbody>
</table>

11 Hydraulic Head

- **Introduction**
- **Principles**
- **Method of Installing Piezometers by Driving**
- **Method of Installing Piezometers by Jetting**
- **Method of Flushing and Testing Piezometers**
- **Method of Measuring Water Levels in Piezometers**
- **Method of Installing Tensiometers**
- **Interpretation of Hydraulic-Head Readings**
- **Literature Cited**

By R. C. Reeve

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1</td>
<td>Introduction</td>
<td>180</td>
</tr>
<tr>
<td>11.2</td>
<td>Principles</td>
<td>181</td>
</tr>
<tr>
<td>11.3</td>
<td>Method of Installing Piezometers by Driving</td>
<td>185</td>
</tr>
<tr>
<td>11.4</td>
<td>Method of Installing Piezometers by Jetting</td>
<td>187</td>
</tr>
<tr>
<td>11.5</td>
<td>Method of Flushing and Testing Piezometers</td>
<td>189</td>
</tr>
<tr>
<td>11.6</td>
<td>Method of Measuring Water Levels in Piezometers</td>
<td>190</td>
</tr>
<tr>
<td>11.7</td>
<td>Method of Installing Tensiometers</td>
<td>192</td>
</tr>
<tr>
<td>11.8</td>
<td>Interpretation of Hydraulic-Head Readings</td>
<td>193</td>
</tr>
<tr>
<td>11.9</td>
<td>Literature Cited</td>
<td>196</td>
</tr>
</tbody>
</table>

12 Rate of Water Intake in the Field

By Anson R. Bertrand

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1</td>
<td>General Introduction</td>
<td>197</td>
</tr>
<tr>
<td>12.2</td>
<td>Method of Artificial Rainfall</td>
<td>198</td>
</tr>
<tr>
<td>12.3</td>
<td>Method of Flooding</td>
<td>202</td>
</tr>
<tr>
<td>12.4</td>
<td>Method of Watershed Hydrographs</td>
<td>207</td>
</tr>
<tr>
<td>12.5</td>
<td>Analysis and Presentation of Data</td>
<td>208</td>
</tr>
<tr>
<td>12.6</td>
<td>Literature Cited</td>
<td>208</td>
</tr>
</tbody>
</table>

13 Laboratory Measurement of Hydraulic Conductivity of Saturated Soil

By A. Klute

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1</td>
<td>Introduction</td>
<td>210</td>
</tr>
<tr>
<td>13.2</td>
<td>Principles</td>
<td>210</td>
</tr>
<tr>
<td>13.3</td>
<td>Methods</td>
<td>213</td>
</tr>
<tr>
<td>13.4</td>
<td>Literature Cited</td>
<td>220</td>
</tr>
</tbody>
</table>

14 Field Measurement of Hydraulic Conductivity Below a Water Table

By L. Boersma

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.1</td>
<td>Introduction</td>
<td>222</td>
</tr>
<tr>
<td>14.2</td>
<td>Auger-Hole Method</td>
<td>223</td>
</tr>
<tr>
<td>14.3</td>
<td>Piezometer Method</td>
<td>229</td>
</tr>
<tr>
<td>14.4</td>
<td>Literature Cited</td>
<td>233</td>
</tr>
</tbody>
</table>

15 Field Measurement of Hydraulic Conductivity Above a Water Table

By L. Boersma

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1</td>
<td>Introduction</td>
<td>234</td>
</tr>
<tr>
<td>15.2</td>
<td>Double-tube Method</td>
<td>234</td>
</tr>
<tr>
<td>15.3</td>
<td>Shallow-Well Pump-In Method</td>
<td>242</td>
</tr>
<tr>
<td>15.4</td>
<td>Permeameter Method</td>
<td>248</td>
</tr>
<tr>
<td>15.5</td>
<td>Literature Cited</td>
<td>252</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>--------------------------</td>
</tr>
<tr>
<td>18</td>
<td>Water Capacity</td>
<td>A. Klute</td>
</tr>
<tr>
<td>22</td>
<td>Composition of Soil Atmosphere</td>
<td>C. H. M. van Bavel</td>
</tr>
</tbody>
</table>
CONTENTS, PART 1

23 Gas Movement
 23-1 Air Permeability
 23-2 Apparent Diffusion Coefficient
 23-3 Literature Cited
 D. D. Evans
 319
 325
 330

24 Temperature
 24-1 General Introduction
 24-2 Kinds of Thermometers Used in Soils Work
 24-3 Calibration of Thermometers
 24-4 Field Measurements
 24-5 Literature Cited
 Sterling A. Taylor and Ray D. Jackson
 331
 337
 340
 344

25 Heat Capacity and Specific Heat
 25-1 Introduction
 25-2 Principles
 25-3 Method
 25-4 Literature Cited
 Sterling A. Taylor and Ray D. Jackson
 345
 346
 348

26 Heat Transfer
 26-1 General Introduction
 26-2 General Principles
 26-3 Thermal Conductivity
 26-4 Thermal Diffusivity
 26-5 Literature Cited
 Ray D. Jackson and Sterling A. Taylor
 349
 351
 356
 360

27 Reflectivity
 27-1 Introduction
 27-2 Principles
 27-3 Method
 27-4 Literature Cited
 Torrence H. MacDonald
 361
 362
 363
 365

28 Long-Wave Radiation
 28-1 Introduction
 28-2 Method
 28-3 Literature Cited
 Torrence H. MacDonald
 366
 369
 370

29 Particle Density
 29-1 Introduction
 29-2 Principles
 29-3 Method
 29-4 Literature Cited
 G. R. Blake
 371
 371
 371
 373
30 Bulk Density
G. R. Blake
30-1 General Introduction ... 374
30-2 Core Method ... 375
30-3 Excavation Method ... 377
30-4 Clod Method .. 381
30-5 Radiation Methods ... 383
30-6 Literature Cited ... 390

31 Consistency
George F. Sowers
31-1 Introduction ... 391
31-2 Principles ... 392
31-3 Method .. 394
31-4 Literature Cited .. 399

32 Compactibility
Earl J. Felt
32-1 Introduction ... 400
32-2 Principles ... 402
32-3 Method .. 405
32-4 Literature Cited .. 412

33 Stress Distribution
Edward S. Barber
33-1 Introduction ... 413
33-2 Principles ... 415
33-3 Method .. 425
33-4 Literature Cited .. 429

34 Shear Strength
John R. Sallberg
34-1 General Introduction ... 431
34-2 Methods for Measuring Shear Strength 431
34-3 Factors Affecting Shear-Strength Test Results 433
34-4 Direct Shear .. 434
34-5 Triaxial Compression ... 438
34-6 Unconfined Compression 445
34-7 Literature Cited .. 447

35 Volume Change
W. G. Holtz
35-1 Introduction ... 448
35-2 Principles ... 448
35-3 Method for Consolidation 449
35-4 Method for Expansion .. 461
35-5 Method for Shrinkage .. 463
35-6 Literature Cited .. 465
36 Modulus of Rupture

36-1 Introduction
36-2 Principles
36-3 Method
36-4 Literature Cited

R. C. REEVE

466
466
467
471

37 Penetrometer Measurements

37-1 General Introduction
37-2 Pocket Penetrometer
37-3 Proctor Penetrometer
37-4 Cone Penetrometer
37-5 Standard Split-Spoon Penetrometer
37-6 Literature Cited

DONALD T. DAVIDSON

472
473
474
478
481
484

38 Bearing Capacity

38-1 General Introduction
38-2 California Bearing Ratio
38-3 Field Plate-Bearing Test
38-4 Literature Cited

W. A. GOODWIN

485
487
494
498

39 Size Distribution of Aggregates

39-1 Introduction
39-2 Method for Water-Stable Aggregates
39-3 Literature Cited

W. D. KEMPER AND W. S. CHEPIL

499
506
509

40 Aggregate Stability

40-1 Introduction
40-2 Principles
40-3 Method
40-4 Literature Cited

W. D. KEMPER

511
512
515
519

41 Air-to-Water Permeability Ratio

41-1 Introduction
41-2 Principles
41-3 Method for Permeability of Soil to Air
41-4 Method for Permeability of Soil to Water
41-5 Expression and Interpretation of Results
41-6 Literature Cited

R. C. REEVE

520
520
524
528
530
531
CONTENTS, PART 1

42 Specific Surface

M. M. Mortland and W. D. Kemper

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>42-1</td>
<td>Introduction</td>
</tr>
<tr>
<td>42-2</td>
<td>Principles</td>
</tr>
<tr>
<td>42-3</td>
<td>Method</td>
</tr>
<tr>
<td>42-4</td>
<td>Literature Cited</td>
</tr>
</tbody>
</table>

Page 532

43 Particle Fractionation and Particle-Size Analysis

Paul R. Day

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>43-1</td>
<td>Introduction</td>
</tr>
<tr>
<td>43-2</td>
<td>Principles</td>
</tr>
<tr>
<td>43-3</td>
<td>Method for Separation of Clay, Silt, and Sand Fractions</td>
</tr>
<tr>
<td>43-4</td>
<td>Pipette Method of Particle-Size Analysis</td>
</tr>
<tr>
<td>43-5</td>
<td>Hydrometer Method of Particle-Size Analysis</td>
</tr>
<tr>
<td>43-6</td>
<td>Literature Cited</td>
</tr>
</tbody>
</table>

Page 545

44 Pretreatment for Mineralogical Analysis

G. W. Kunze

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>44-1</td>
<td>General Introduction</td>
</tr>
<tr>
<td>44-2</td>
<td>Removal of Soluble Salts and Carbonates</td>
</tr>
<tr>
<td>44-3</td>
<td>Removal of Organic Matter</td>
</tr>
<tr>
<td>44-4</td>
<td>Removal of Free Iron Oxides</td>
</tr>
<tr>
<td>44-5</td>
<td>Particle-Size Separations</td>
</tr>
<tr>
<td>44-6</td>
<td>Literature Cited</td>
</tr>
</tbody>
</table>

Page 568

45 Free Oxides, Hydroxides, and Amorphous Aluminosilicates

M. L. Jackson

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>45-1</td>
<td>General Introduction</td>
</tr>
<tr>
<td>45-2</td>
<td>Quartz</td>
</tr>
<tr>
<td>45-3</td>
<td>Amorphous Aluminosilicates, Silica, and Alumina</td>
</tr>
<tr>
<td>45-4</td>
<td>Allophane</td>
</tr>
<tr>
<td>45-5</td>
<td>Rutile and Anatase</td>
</tr>
<tr>
<td>45-6</td>
<td>Literature Cited</td>
</tr>
</tbody>
</table>

Page 578

46 Petrographic Microscope Techniques

John G. Cady

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>46-1</td>
<td>General Introduction</td>
</tr>
<tr>
<td>46-2</td>
<td>Grains</td>
</tr>
<tr>
<td>46-3</td>
<td>Thin Sections</td>
</tr>
<tr>
<td>46-4</td>
<td>Applications</td>
</tr>
<tr>
<td>46-5</td>
<td>Literature Cited</td>
</tr>
</tbody>
</table>

Page 604

47 Electron Microscope Techniques

J. A. Kittrick

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>47-1</td>
<td>Introduction</td>
</tr>
<tr>
<td>47-2</td>
<td>Principles and Instrumentation</td>
</tr>
<tr>
<td>47-3</td>
<td>Specimen Preparation</td>
</tr>
<tr>
<td>47-4</td>
<td>Enhancing Specimen Definition</td>
</tr>
<tr>
<td>47-5</td>
<td>Sources of Information</td>
</tr>
<tr>
<td>47-6</td>
<td>Literature Cited</td>
</tr>
</tbody>
</table>

Page 632
CONTENTS, PART 1

48 Electron-Diffraction Techniques for Mineral Identification

J. A. Kittrick

48-1 Introduction 653
48-2 Principles 654
48-3 Transmission Method 659
48-4 Reflection Method 667
48-5 Sources of Information 669
48-6 Literature Cited 669

49 X-Ray Diffraction Techniques for Mineral Identification and

Mineralogical Composition

L. D. Whittig

49-1 General Introduction 671
49-2 Principles of X-Ray Diffraction 672
49-3 Preparation of Samples 674
49-4 X-Ray Examination of Samples 687
49-5 Criteria for Differentiation of Layer-Silicate Species 689
49-6 Qualitative Interpretation of Diffraction Patterns 692
49-7 Quantitative Interpretation of Diffraction Patterns 694
49-8 Literature Cited 696

50 Thermal Analysis Techniques for Mineral Identification and

Mineralogical Composition

Isaac Barshad

50-1 General Introduction 699
50-2 General Principles 700
50-3 Differential Thermal Analysis 701
50-4 Thermogravimetric Analysis 720
50-5 Quantitative Mineralogical Composition by Thermal Analysis 727
50-6 Quantitative Mineralogical Composition by Use of Thermal Analysis and

Other Analytical Methods 728
50-7 Literature Cited 741

51 Infrared Spectrometry

J. L. Mortensen, D. M. Anderson, J. L. White

51-1 General Introduction 743
51-2 Principles 745
51-3 Sample Preparation 753
51-4 Functional-Group and Qualitative Analysis of Organic Compounds 758
51-5 Difference Spectra of Adsorption Mixtures 762
51-6 Qualitative Analysis and Studies of Isomorphous Substitution in Clay

Minerals 763
51-7 Determination of Di- and Trioctahedral Compositions, and Hydration

Studies 765
51-8 Quantitative Analysis 767
51-9 Literature Cited 768

SUBJECT INDEX xliii
CONTENTS

Part 2

<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOREWORD</td>
<td>vii</td>
</tr>
<tr>
<td>PREFACE</td>
<td>ix</td>
</tr>
<tr>
<td>CONTRIBUTORS</td>
<td>xv</td>
</tr>
</tbody>
</table>

52 Elemental Analysis by X-Ray Emission Spectrography

R. C. Vanden Heuvel

52-1 Introduction 771
52-2 Principles 772
52-3 Method 805
52-4 Literature Cited 819

53 Elemental Analysis by Optical Emission Spectrography

Alston W. Specht, Alfred T. Myers, and Uteana Oda

53-1 Introduction 822
53-2 Principles 822
53-3 Instrumentation 825
53-4 Method for Elemental Analysis of Soil Extracts 827
53-5 Method for Total Analysis 837
53-6 Semiquantitative Method for Total Analysis 846
53-7 Literature Cited 847

54 Elemental Analysis by Flame Photometry

C. I. Rich

54-1 Introduction 849
54-2 Principles 849
54-3 Instrumentation 853
54-4 Preparation of Solution 856
54-5 Methods for Overcoming Spectral Interferences 858
54-6 Wavelength, Flame Conditions, and Interferences for Individual Elements 860
54-7 Standard Solutions 861
54-8 Readings for Routine Analysis 861
54-9 General Methods for Specific Extracts 862
54-10 Precision and Accuracy in Flame Photometry 864
54-11 Literature Cited 864
CONTENTS, PART 2

55 Absorption Spectrophotometry

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>55-1</td>
<td>Introduction</td>
<td>Allan B. Prince</td>
<td>866</td>
</tr>
<tr>
<td>55-2</td>
<td>Principles</td>
<td>Allan B. Prince</td>
<td>867</td>
</tr>
<tr>
<td>55-3</td>
<td>Filter Photometry</td>
<td>Allan B. Prince</td>
<td>870</td>
</tr>
<tr>
<td>55-4</td>
<td>Spectrophotometry</td>
<td>Allan B. Prince</td>
<td>875</td>
</tr>
<tr>
<td>55-5</td>
<td>Calibration</td>
<td>Allan B. Prince</td>
<td>877</td>
</tr>
<tr>
<td>55-6</td>
<td>Literature Cited</td>
<td>Allan B. Prince</td>
<td>878</td>
</tr>
</tbody>
</table>

56 Elemental Analysis by Polarography

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>56-1</td>
<td>General Introduction</td>
<td>Ronald G. Menzel</td>
<td>879</td>
</tr>
<tr>
<td>56-2</td>
<td>Principles</td>
<td>Ronald G. Menzel</td>
<td>880</td>
</tr>
<tr>
<td>56-3</td>
<td>Instrumentation</td>
<td>Ronald G. Menzel</td>
<td>883</td>
</tr>
<tr>
<td>56-4</td>
<td>Sample Preparation</td>
<td>Ronald G. Menzel</td>
<td>884</td>
</tr>
<tr>
<td>56-5</td>
<td>Calibration</td>
<td>Ronald G. Menzel</td>
<td>885</td>
</tr>
<tr>
<td>56-6</td>
<td>Simultaneous Determination of Copper, Nickel, Zinc, Cobalt, and Manganese</td>
<td>Ronald G. Menzel</td>
<td>888</td>
</tr>
<tr>
<td>56-7</td>
<td>Dissolved Oxygen in Soil Solution</td>
<td>Ronald G. Menzel</td>
<td>890</td>
</tr>
<tr>
<td>56-8</td>
<td>Literature Cited</td>
<td>Ronald G. Menzel</td>
<td>892</td>
</tr>
</tbody>
</table>

57 Cation-Exchange Capacity

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>57-1</td>
<td>Introduction</td>
<td>H. D. Chapman</td>
<td>891</td>
</tr>
<tr>
<td>57-2</td>
<td>Cation-Exchange Capacity by Ammonium Saturation</td>
<td>H. D. Chapman</td>
<td>894</td>
</tr>
<tr>
<td>57-3</td>
<td>Cation-Exchange Capacity by Sodium Saturation</td>
<td>H. D. Chapman</td>
<td>899</td>
</tr>
<tr>
<td>57-4</td>
<td>Cation-Exchange Capacity by Summation</td>
<td>H. D. Chapman</td>
<td>900</td>
</tr>
<tr>
<td>57-5</td>
<td>Literature Cited</td>
<td>H. D. Chapman</td>
<td>900</td>
</tr>
</tbody>
</table>

58 Total Exchangeable Bases

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>58-1</td>
<td>Introduction</td>
<td>H. D. Chapman</td>
<td>902</td>
</tr>
<tr>
<td>58-2</td>
<td>Method</td>
<td>H. D. Chapman</td>
<td>903</td>
</tr>
<tr>
<td>58-3</td>
<td>Literature Cited</td>
<td>H. D. Chapman</td>
<td>904</td>
</tr>
</tbody>
</table>

59 Exchange Acidity

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>59-1</td>
<td>Introduction</td>
<td>Michael Pech</td>
<td>905</td>
</tr>
<tr>
<td>59-2</td>
<td>Residual-Carbonate Method</td>
<td>Michael Pech</td>
<td>907</td>
</tr>
<tr>
<td>59-3</td>
<td>Barium Chloride-Triethanolamine Method</td>
<td>Michael Pech</td>
<td>910</td>
</tr>
<tr>
<td>59-4</td>
<td>Ammonium Acetate Method</td>
<td>Michael Pech</td>
<td>912</td>
</tr>
<tr>
<td>59-5</td>
<td>Literature Cited</td>
<td>Michael Pech</td>
<td>912</td>
</tr>
</tbody>
</table>

60 Hydrogen-Ion Activity

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>60-1</td>
<td>Introduction</td>
<td>Michael Pech</td>
<td>914</td>
</tr>
<tr>
<td>60-2</td>
<td>Factors Affecting Soil pH</td>
<td>Michael Pech</td>
<td>917</td>
</tr>
<tr>
<td>60-3</td>
<td>Soil pH by Glass Electrode pH Meter</td>
<td>Michael Pech</td>
<td>920</td>
</tr>
<tr>
<td>60-4</td>
<td>Soil pH by Indicators</td>
<td>Michael Pech</td>
<td>924</td>
</tr>
<tr>
<td>60-5</td>
<td>Literature Cited</td>
<td>Michael Pech</td>
<td>925</td>
</tr>
</tbody>
</table>
CONTENTS, PART 2

61 Lime Requirement

 61-1 Introduction .. 927
 61-2 Barium Chloride-Triethanolamine Method 928
 61-3 Soil pH Method ... 929
 61-4 Literature Cited ... 932

62 Soluble Salts

 C. A. Bower and L. V. Wilcox

 62-1 Saturation Extract and Other Aqueous Extracts 933
 62-2 Soluble Salts by Electrical Conductivity 936
 62-3 Soluble Constituents in Aqueous Extracts 940
 62-4 Literature Cited .. 951

63 Fusion With Sodium Carbonate for Total Elemental Analysis

 Yoshinori Kanehiro and G. Donald Sherman

 63-1 Introduction .. 952
 63-2 Principles .. 952
 63-3 Method for Preparation of Sample 953
 63-4 Method for Loss on Ignition 954
 63-5 Method for Pretreatment of Soils High in Iron Oxide and Manganese Oxide ... 955
 63-6 Method for Fusion With Sodium Carbonate 955
 63-7 Method for Preparation of Fusion for Analysis 957
 63-8 Literature Cited ... 958

64 Silicon

 Victor J. Kilmer

 64-1 Introduction .. 959
 64-2 Principles .. 959
 64-3 Method ... 960
 64-4 Literature Cited ... 962

65 Iron

 R. V. Olson

 65-1 Total Iron .. 963
 65-2 Exchangeable Iron ... 967
 65-3 Availability Indexes ... 969
 65-4 Free Iron Oxides .. 971
 65-5 Literature Cited ... 973

66 Titanium

 G. Donald Sherman and Yoshinori Kanehiro

 66-1 Introduction .. 974
 66-2 Principles .. 974
 66-3 Acid Digestion Method ... 975
 66-4 Fusion Method .. 976
 66-5 Literature Cited ... 977
67 Aluminum

67-1 General Introduction .. 978
67-2 Total Aluminum ... 980
67-3 Exchangeable Aluminum 985
67-4 Extractable Aluminum 994
67-5 Literature Cited ... 997

68 Calcium and Magnesium

68-1 Introduction .. 999
68-2 Principles ... 999
68-3 Method .. 1003
68-4 Availability Indexes .. 1008
68-5 Literature Cited ... 1009

69 Manganese

69-1 Introduction .. 1011
69-2 Total Manganese ... 1011
69-3 Method for Exchangeable Manganese 1013
69-4 Availability Indexes .. 1014
69-5 General Comments .. 1016
69-6 Literature Cited ... 1017

70 Digestion With Hydrofluoric and Perchloric Acids for Total Potassium and Sodium

70-1 Introduction .. 1019
70-2 Method .. 1020
70-3 Literature Cited ... 1021

71 Potassium

71-1 General Introduction .. 1022
71-2 Total Potassium ... 1022
71-3 Exchangeable Potassium 1025
71-4 Availability Indexes .. 1027
71-5 Literature Cited ... 1030

72 Sodium

72-1 General Introduction .. 1031
72-2 Total Sodium .. 1031
72-3 Exchangeable Sodium .. 1033
72-4 Availability Indexes .. 1034
72-5 Literature Cited ... 1034
73 Phosphorus

S. R. Olsen and L. A. Dean

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>73-1 Introduction</td>
<td>1035</td>
</tr>
<tr>
<td>73-2 Total Phosphorus</td>
<td>1036</td>
</tr>
<tr>
<td>73-3 Organic Phosphorus</td>
<td>1038</td>
</tr>
<tr>
<td>73-4 Availability Indexes</td>
<td>1040</td>
</tr>
<tr>
<td>73-5 Literature Cited</td>
<td>1048</td>
</tr>
</tbody>
</table>

74 Molybdenum

H. M. Reisenauer

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>74-1 Total Molybdenum</td>
<td>1050</td>
</tr>
<tr>
<td>74-2 Molybdenum Availability Indexes</td>
<td>1054</td>
</tr>
<tr>
<td>74-3 Literature Cited</td>
<td>1057</td>
</tr>
</tbody>
</table>

75 Boron

John I. Wear

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>75-1 Introduction</td>
<td>1059</td>
</tr>
<tr>
<td>75-2 Principles</td>
<td>1059</td>
</tr>
<tr>
<td>75-3 Method for Total Boron</td>
<td>1060</td>
</tr>
<tr>
<td>75-4 Method for Hot-Water-Soluble Boron</td>
<td>1062</td>
</tr>
<tr>
<td>75-5 Comments</td>
<td>1063</td>
</tr>
<tr>
<td>75-6 Literature Cited</td>
<td>1063</td>
</tr>
</tbody>
</table>

76 Cobalt

Kenneth C. Beeson, Joe Kubota, and V. A. Lazar

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>76-1 Introduction</td>
<td>1064</td>
</tr>
<tr>
<td>76-2 Colorimetric Analysis Using Ortho-Nitrosoresol</td>
<td>1065</td>
</tr>
<tr>
<td>76-3 Colorimetric Analysis Using Nitroso-R-Salt</td>
<td>1074</td>
</tr>
<tr>
<td>76-4 Availability Index</td>
<td>1075</td>
</tr>
<tr>
<td>76-5 Literature Cited</td>
<td>1076</td>
</tr>
</tbody>
</table>

77 Copper

John G. A. Fiskell

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>77-1 Total Copper</td>
<td>1078</td>
</tr>
<tr>
<td>77-2 Availability Indexes</td>
<td>1084</td>
</tr>
<tr>
<td>77-3 Literature Cited</td>
<td>1089</td>
</tr>
</tbody>
</table>

78 Zinc

Frank G. Viets, Jr., and Louis C. Boawn

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>78-1 Introduction</td>
<td>1090</td>
</tr>
<tr>
<td>78-2 Total Zinc</td>
<td>1091</td>
</tr>
<tr>
<td>78-3 Availability Indexes</td>
<td>1096</td>
</tr>
<tr>
<td>78-4 Literature Cited</td>
<td>1100</td>
</tr>
</tbody>
</table>

79 Sulfur

C. E. Bardsley and J. D. Lancaster

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>79-1 General Introduction</td>
<td>1102</td>
</tr>
<tr>
<td>79-2 Total Sulfur</td>
<td>1103</td>
</tr>
<tr>
<td>79-3 Organic Sulfur</td>
<td>1108</td>
</tr>
<tr>
<td>79-4 Availability Indexes</td>
<td>1110</td>
</tr>
<tr>
<td>79-5 Literature Cited</td>
<td>1114</td>
</tr>
</tbody>
</table>
CONTENTS, PART 2

80 Selenium

80-1 Introduction .. 1117
80-2 Total Selenium .. 1118
80-3 Availability Indexes ... 1122
80-4 Literature Cited ... 1123

81 Chlorine and Bromine

P. R. Stout and C. M. Johnson

81-1 Introduction .. 1124
81-2 Principles ... 1125
81-3 Potentiometric Method for Chloride 1127
81-4 Microdiffusion Method for Chloride and Bromide 1130
81-5 Microdiffusion Method for Bromide 1133
81-6 Literature Cited ... 1134

82 Fluorine

Robert F. Brewer

82-1 Introduction .. 1135
82-2 Total Fluorine .. 1136
82-3 Water-Soluble Fluorine 1145
82-4 Literature Cited ... 1147

83 Total Nitrogen

J. M. Bremner

83-1 Introduction .. 1149
83-2 Principles ... 1152
83-3 Regular Macro-Kjeldahl Method 1162
83-4 Macro-Kjeldahl Method to Include Nitrate 1164
83-5 Macro-Kjeldahl Method to Include Nitrate and Nitrite 1164
83-6 Comments on Macro-Kjeldahl Methods 1166
83-7 Semimicro-Kjeldahl Method 1171
83-8 Addendum ... 1175
83-9 Literature Cited ... 1176

84 Inorganic Forms of Nitrogen

J. M. Bremner

84-1 General Introduction .. 1179
84-2 Extraction of Exchangeable Ammonium, Nitrate, and Nitrite 1185
84-3 Exchangeable Ammonium, Nitrate, and Nitrite by Steam Distillation Methods 1191
84-4 Exchangeable Ammonium, Nitrate, and Nitrite by Microdiffusion Methods 1206
84-5 Nitrate by Colorimetric Methods 1212
84-6 Nitrite by Colorimetric Methods 1219
84-7 Nonexchangeable Ammonium 1224
84-8 Literature Cited ... 1232
85 Organic Forms of Nitrogen

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>85-1</td>
<td>Introduction</td>
<td>1238</td>
</tr>
<tr>
<td>85-2</td>
<td>Principles</td>
<td>1241</td>
</tr>
<tr>
<td>85-3</td>
<td>Acid Hydrolysis Method</td>
<td>1247</td>
</tr>
<tr>
<td>85-4</td>
<td>Literature Cited</td>
<td>1254</td>
</tr>
</tbody>
</table>

86 Isotope-Ratio Analysis of Nitrogen in Nitrogen-15 Tracer Investigations

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>86-1</td>
<td>General Introduction</td>
<td>1256</td>
</tr>
<tr>
<td>86-2</td>
<td>General Principles</td>
<td>1259</td>
</tr>
<tr>
<td>86-3</td>
<td>Conversion of Labeled Nitrogen to Ammonium</td>
<td>1262</td>
</tr>
<tr>
<td>86-4</td>
<td>Conversion of Ammonium to Nitrogen Gas</td>
<td>1269</td>
</tr>
<tr>
<td>86-5</td>
<td>Determination of Isotopic Composition of Nitrogen Gas</td>
<td>1274</td>
</tr>
<tr>
<td>86-6</td>
<td>Addendum</td>
<td>1282</td>
</tr>
<tr>
<td>86-7</td>
<td>Literature Cited</td>
<td>1283</td>
</tr>
</tbody>
</table>

87 Gaseous Forms of Nitrogen

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>87-1</td>
<td>General Introduction</td>
<td>1287</td>
</tr>
<tr>
<td>87-2</td>
<td>Chemical Methods</td>
<td>1289</td>
</tr>
<tr>
<td>87-3</td>
<td>Physical Methods</td>
<td>1304</td>
</tr>
<tr>
<td>87-4</td>
<td>Literature Cited</td>
<td>1318</td>
</tr>
</tbody>
</table>

88 Nitrogen Availability Indexes

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>88-1</td>
<td>Introduction</td>
<td>1324</td>
</tr>
<tr>
<td>88-2</td>
<td>Principles</td>
<td>1338</td>
</tr>
<tr>
<td>88-3</td>
<td>Method</td>
<td>1339</td>
</tr>
<tr>
<td>88-4</td>
<td>Literature Cited</td>
<td>1341</td>
</tr>
</tbody>
</table>

89 Total Carbon

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>89-1</td>
<td>General Introduction</td>
<td>1346</td>
</tr>
<tr>
<td>89-2</td>
<td>Total Carbon by Wet Combustion</td>
<td>1347</td>
</tr>
<tr>
<td>89-3</td>
<td>Total Carbon by Dry Combustion</td>
<td>1353</td>
</tr>
<tr>
<td>89-4</td>
<td>Literature Cited</td>
<td>1365</td>
</tr>
</tbody>
</table>

90 Organic Carbon

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>90-1</td>
<td>General Introduction</td>
<td>1367</td>
</tr>
<tr>
<td>90-2</td>
<td>Combustion Methods With Measurement of Carbon Dioxide</td>
<td>1368</td>
</tr>
<tr>
<td>90-3</td>
<td>Walkley-Black Method</td>
<td>1372</td>
</tr>
<tr>
<td>90-4</td>
<td>Schollenberger Method</td>
<td>1376</td>
</tr>
<tr>
<td>90-5</td>
<td>Literature Cited</td>
<td>1378</td>
</tr>
</tbody>
</table>
91 Carbonate

L. E. Allison and C. D. Moodie

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>91-1</td>
<td>Introduction</td>
<td>L. E. Allison and C. D. Moodie</td>
<td>1379</td>
</tr>
<tr>
<td>91-2</td>
<td>Vacuum-Distillation and Titration Method</td>
<td></td>
<td>1380</td>
</tr>
<tr>
<td>91-3</td>
<td>Gravimetric Method</td>
<td></td>
<td>1385</td>
</tr>
<tr>
<td>91-4</td>
<td>Acid-Neutralization Method</td>
<td></td>
<td>1387</td>
</tr>
<tr>
<td>91-5</td>
<td>Gravimetric Method for Loss of Carbon Dioxide</td>
<td></td>
<td>1388</td>
</tr>
<tr>
<td>91-6</td>
<td>Volumetric Calcimeter Method</td>
<td></td>
<td>1389</td>
</tr>
<tr>
<td>91-7</td>
<td>Pressure-Calcimeter Method</td>
<td></td>
<td>1392</td>
</tr>
<tr>
<td>91-8</td>
<td>Literature Cited</td>
<td></td>
<td>1396</td>
</tr>
</tbody>
</table>

92 Organic Matter

F. E. Broadbent

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>92-1</td>
<td>Introduction</td>
<td></td>
<td>1397</td>
</tr>
<tr>
<td>92-2</td>
<td>Principles</td>
<td></td>
<td>1398</td>
</tr>
<tr>
<td>92-3</td>
<td>Method</td>
<td></td>
<td>1398</td>
</tr>
<tr>
<td>92-4</td>
<td>Literature Cited</td>
<td></td>
<td>1400</td>
</tr>
</tbody>
</table>

93 Partial Extraction of Organic Matter

J. L. Mortensen

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>93-1</td>
<td>Introduction</td>
<td></td>
<td>1401</td>
</tr>
<tr>
<td>93-2</td>
<td>Composition and Solubility of Soil Organic Matter</td>
<td></td>
<td>1402</td>
</tr>
<tr>
<td>93-3</td>
<td>Pretreatment</td>
<td></td>
<td>1403</td>
</tr>
<tr>
<td>93-4</td>
<td>Extractants</td>
<td></td>
<td>1404</td>
</tr>
<tr>
<td>93-5</td>
<td>Literature Cited</td>
<td></td>
<td>1407</td>
</tr>
</tbody>
</table>

94 Gross Chemical Fractionation of Organic Matter

F. J. Stevenson

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>94-1</td>
<td>General Introduction</td>
<td></td>
<td>1409</td>
</tr>
<tr>
<td>94-2</td>
<td>Proximate Analysis</td>
<td></td>
<td>1409</td>
</tr>
<tr>
<td>94-3</td>
<td>Fractionation of Humus</td>
<td></td>
<td>1414</td>
</tr>
<tr>
<td>94-4</td>
<td>Fractionation of Fulvic Acid</td>
<td></td>
<td>1417</td>
</tr>
<tr>
<td>94-5</td>
<td>Literature Cited</td>
<td></td>
<td>1420</td>
</tr>
</tbody>
</table>

95 Inositol Hexaphosphate

F. J. Stevenson

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>95-1</td>
<td>Introduction</td>
<td></td>
<td>1422</td>
</tr>
<tr>
<td>95-2</td>
<td>Principles</td>
<td></td>
<td>1423</td>
</tr>
<tr>
<td>95-3</td>
<td>Method</td>
<td></td>
<td>1424</td>
</tr>
<tr>
<td>95-4</td>
<td>Literature Cited</td>
<td></td>
<td>1427</td>
</tr>
</tbody>
</table>

96 Amino Sugars

F. J. Stevenson

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>96-1</td>
<td>Introduction</td>
<td></td>
<td>1429</td>
</tr>
<tr>
<td>96-2</td>
<td>Colorimetric Method</td>
<td></td>
<td>1429</td>
</tr>
<tr>
<td>96-3</td>
<td>Alkaline Decomposition Method</td>
<td></td>
<td>1433</td>
</tr>
<tr>
<td>96-4</td>
<td>Literature Cited</td>
<td></td>
<td>1436</td>
</tr>
</tbody>
</table>
CONTENTS, PART 2

97 Amino Acids
F. J. Stevenson

97-1 Introduction 1437
97-2 Distribution of Nitrogen According to the Van Slyke Method 1438
97-3 Ion Exchange Chromatography of the Amino Acids in Soil Hydrolysates 1443
97-4 Free Amino Acids 1448
97-5 Literature Cited 1450

98 Microbial Populations by Direct Microscopy
Lloyd R. Frederick

98-1 General Introduction 1452
98-2 Thin-Section Technique 1453
98-3 Smear-Ratio Technique 1455
98-4 Contact-Slide Technique 1457
98-5 Literature Cited 1459

99 Agar-Plate Method for Total Microbial Count
Francis E. Clark

99-1 Introduction 1460
99-2 Principles 1461
99-3 Method 1462
99-4 Literature Cited 1466

100 Most-Probable-Number Method for Microbial Populations
M. Alexander

100-1 Introduction 1467
100-2 Principles 1467
100-3 Method 1469
100-4 Literature Cited 1472

101 Aerobic Spore-Forming Bacteria
Francis E. Clark

101-1 Introduction 1473
101-2 Principles 1473
101-3 Method 1475

102 Nitrifying Bacteria
M. Alexander and Francis E. Clark

102-1 Introduction 1477
102-2 Principles 1478
102-3 Method for Most Probable Number of Nitrosomonas 1479
102-4 Method for Most Probable Number of Nitrobacter 1480
102-5 Method for Isolation of Nitrosomonas in Pure Culture 1481
102-6 Method for Isolation of Nitrobacter in Pure Culture 1482
102-7 Comments 1482
102-8 Literature Cited 1483
CONTENTS, PART 2

103 Denitrifying Bacteria

103-1 Introduction ... 1484
103-2 Principles ... 1484
103-3 Method .. 1485
103-4 Literature Cited ... 1486

M. ALEXANDER

104 Rhizobia

104-1 Introduction ... 1487
104-2 Principles ... 1487
104-3 Method for Isolating Rhizobia from Root Nodules 1488
104-4 Method for Detecting Rhizobia in Soil 1489
104-5 Method for Most Probable Number of Rhizobia in Soil ... 1490
104-6 Method for Culture of Rhizobia From Soil 1491
104-7 Literature Cited ... 1492

FRANCIS E. CLARK

105 Azotobacter

105-1 Introduction ... 1493
105-2 Principles ... 1493
105-3 Soil-Plaque or Mud-Pie Method 1494
105-4 Plate-Count Method 1495
105-5 Most-Probable-Number Method 1496
105-6 Literature Cited ... 1497

FRANCIS E. CLARK

106 Actinomycetes

106-1 Introduction ... 1498
106-2 Method .. 1499
106-3 Literature Cited ... 1501

FRANCIS E. CLARK

107 Fungi

107-1 Introduction ... 1502
107-2 Principles ... 1503
107-3 Method .. 1504
107-4 Literature Cited ... 1505

J. D. MENZIES

108 Algae

108-1 Introduction ... 1506
108-2 Soil-Block Method ... 1507
108-3 Most-Probable-Number Method 1509
108-4 Direct Fluorescence Microscopy 1510
108-5 Literature Cited ... 1512

FRANCIS E. CLARK AND L. W. DURRELL
109 Protozoa

FRANCIS E. CLARK AND W. E. BEARD

109-1 Introduction ... 1513
109-2 Method .. 1514
109-3 Literature Cited 1516

110 Nematodes

JACK ALTMAN

110-1 Introduction ... 1517
110-2 Baermann Funnel Technique 1518
110-3 Wet Sieving Technique, or Tyler Screen Method 1520
110-4 Literature Cited 1523

111 Mites and Other Microarthropods

TYLER A. WOOLLEY

111-1 Introduction ... 1524
111-2 Principles ... 1525
111-3 Methods ... 1526
111-4 Comments .. 1533
111-5 Literature Cited 1535

112 Enzymes

LYNN K. PORTER

112-1 Introduction ... 1536
112-2 Principles ... 1537
112-3 Method for Urease Activity 1545
112-4 Literature Cited 1547

113 Microbial Respiration

G. STOTZKY

113-1 Introduction ... 1550
113-2 Field versus Laboratory Measurements 1552
113-3 Incubation Techniques 1553
113-4 Analysis for Carbon Dioxide 1556
113-5 Analysis for Oxygen 1558
113-6 Method for Carbon Dioxide Evolution 1562
113-7 Method for Respiratory Quotient 1566
113-8 Literature Cited 1569

SUBJECT INDEX ... xliii