METHODS OF SOIL ANALYSIS

Part 2
AGRONOMY

A Series of Monographs Published by the
AMERICAN SOCIETY OF AGRONOMY

General Editor, Monographs 1 to 6, A. G. NORMAN

1 C. EDMUND MARSHALL: The Colloid Chemistry of the Silicate Minerals, 1949

2 BYRON T. SHAW, Editor: Soil Physical Conditions and Plant Growth, 1952

3 K. D. JACOB, Editor: Fertilizer Technology and Resources in the United States, 1953

4 W. H. PIERRE and A. G. NORMAN, Editors: Soil and Fertilizer Phosphate in Crop Nutrition, 1953

5 GEORGE F. SPRAGUE, Editor: Corn and Corn Improvement, 1955

6 J. LEVITT: The Hardiness of Plants, 1956

7 JAMES N. LUTHIN, Editor: Drainage of Agricultural Lands, 1957

General Editor, D. E. GREGG

8 FRANKLIN A. COFFMAN, Editor: Oats and Oat Improvement, 1961

Managing Editor, H. L. HAMILTON

9 C. A. BLACK, Editor-in-Chief, and D. D. EVANS, J. L. WHITE, L. E. ENSMINGER, and F. E. CLARK, Associate Editors: Methods of Soil Analysis, 1965

Part 1—Physical and Mineralogical Properties, Including Statistics of Measurement and Sampling

Part 2—Chemical and Microbiological Properties

Managing Editor, R. C. DINAUER

Monographs 1 through 6, published by Academic Press, Inc., should be ordered from:

Academic Press, Inc.
111 Fifth Avenue
New York, New York 10003

Monographs 7, 8, and 9, published by the American Society of Agronomy, should be ordered from:

American Society of Agronomy
677 South Segoe Road
Madison, Wisconsin, USA 53711
METHODS OF SOIL ANALYSIS

Part 2

Chemical and Microbiological Properties

C. A. BLACK, Editor-in-Chief
and
D. D. EVANS
J. L. WHITE

L. E. ENSMINGER
F. E. CLARK

Associate Editors

R. C. DINAUER, Managing Editor

Sponsored jointly by the
AMERICAN SOCIETY OF AGRONOMY
and
AMERICAN SOCIETY FOR TESTING AND MATERIALS

Number 9 in the series
AGRONOMY

American Society of Agronomy, Inc., Publisher
Madison, Wisconsin, USA
1965
GENERAL FOREWORD

AGRONOMY—An ASA Monograph Series

The need for comprehensive treatments of specific subject matter areas was realized by members of the American Society of Agronomy several years ago. As a result, the first monograph of a series entitled “Agronomy” was published in 1949. Dr. A. G. Norman, an eminent member of the Society, was appointed general editor and served in this capacity for the first six publications. Since the Society, a nonprofit organization, was not initially able to finance the project, arrangements were made with Academic Press, Inc., of New York to publish the monographs. This procedure was used for the first six monographs. This fact explains why these six publications are not available at the Society Headquarters Office but instead from Academic Press, Inc.

By 1957, the Society had developed considerably and had in operation a Headquarters Office with a competent editorial staff which made it possible to editorially manage its publications. Also, the financial stability of the Society now enabled it to pursue independently the monograph project, including complete financing and publishing of the series.

The ASA now presents its ninth contribution, with several more in preparation. In contrast to the first eight “volumes,” the ninth and succeeding issues will be referred to as “numbers.” As reported in the Preface, the project which was to become this monograph on Methods of Soil Analysis was conceived and initiated in 1957 by the Soil Science Society of America. During the course of development of the project it became apparent that the publication would be a particularly large and expensive one. The American Society of Agronomy had in its organization a Monographs Committee to which was assigned the responsibility to decide on the appropriateness of subject-matter for ASA monographs while at the same time taking note of the financial obligations related to this project. With the agreement of the SSSA, the Monographs Committee recommended the sponsorship and complete financing of this monograph to the ASA. Approval to proceed was given by the American Society of Agronomy.

It may interest readers to know that members of the SSSA are members of the ASA and that members of the Crop Science Society of America are also members of the ASA. The three societies, while administratively separate, autonomous, and individually incorporated organizations in Wisconsin, are closely associated, work harmoniously together, and share a Headquarters Office and staff in Madison, Wisconsin. The readiness of the ASA to sponsor a project initiated and successfully carried through by an SSSA committee, the members of which are also ASA members, is a further indication of the desirability and practicality of the existing favorable inter-relationship among these associated societies.

December 1964

Matthias Stelly
Executive Secretary-Treasurer
American Society of Agronomy
Crop Science Society of America
Soil Science Society of America
Cooperation on a project like this monograph on soil analysis is appropriate for the American Society of Agronomy and the American Society for Testing and Materials. The American Society of Agronomy has primary concern for efficient agricultural production while ASTM interest covers standards and test methods used in engineering and industrial applications. Numerous soil characteristics are significant and important to both, and both societies subscribe to full use of applicable science in making soil of maximum benefit to man.

Historically the processes of testing and analyzing soil have relied heavily on standardized apparatus and standardized procedures. With a complex, heterogeneous and reactive material like soil, we have been fortunate when the purpose of a measurement has been sufficiently understood that a realistic and useful testing procedure could be devised.

As knowledge increases of the components, principles and mechanisms represented in soil, soil scientists can deal increasingly with properties that can be defined, ideally, in such a way that measured values are independent of apparatus or method and can be expressed in standard units. There are some who would restrict the technical meaning of the term “property” to such “qualities” of matter. For soil it is not always possible to define such properties that will serve our needs. The reader will be interested to see how far we have progressed in this direction.

For ASTM, standardization of specifications and methods of testing is an important consideration. Even though there are properties for which different methods may yield similar results, the ultimate objective would be to establish a single standard method.

Skill is required in the definition of useful soil properties, in devising suitable measuring methods and in making the determinations. It is the purpose of this intersociety monograph to assemble and disseminate these skills for the analysis of soil. We are much indebted to the Editor, to his staff, and to the many contributing authors.

December 1964

Lorenzo A. Richards, President
American Society of Agronomy

Charles L. Kent, President
American Society for Testing and Materials
PREFACE

The need for authoritative information on soil analysis is shared by most soil scientists, whether or not they are actively engaged personally in making analyses. Comprehensive and authoritative coverage of a range of subject matter as great as that of soil analysis, however, is hardly possible for a single individual and may be accomplished more readily by cooperation of specialists in the different areas of work. This monograph is a result of the cooperative endeavor of many specialists.

In January 1957, L. B. Nelson, then president of the Soil Science Society of America, appointed a committee to study and recommend whether or not the SSSA should prepare a book on methods of soil analysis and to consider the fields to be covered and the method of organization, selection of methods, and editing. This committee included W. H. Gardner, E. R. Graham, J. J. Hanway, M. L. Jackson, R. F. Reitemeier, R. L. Starkey, and L. V. Wilcox, with C. I. Rich as chairman. The committee recommended that the SSSA prepare such a book. The committee recommended further that the standing committees on methods of soil analysis already existing in the Society, with the addition of a committee on microbiological properties, be given the responsibility of selecting and editing the methods; and that the chairmen of these committees, together with an individual elected by them to be the editor-in-chief, should comprise the editorial board. The recommendations were approved by the executive subcommittee of the SSSA in August 1957 and by the entire executive committee at the annual meeting held in November 1957 in Atlanta, Georgia.

At the same time a parallel and independent development was taking place in the American Society for Testing and Materials. ASTM Committee D-18 on Soils and Rocks for Engineering Purposes, Subcommittee R-6, with the late D. T. Davidson as chairman, was developing plans for a monograph on methods of soil analysis to supplement the methods of tests already published by ASTM. Because the monograph project of the Soil Science Society of America was further advanced than that of the American Society for Testing and Materials when the duplication of efforts was discovered, the ASTM committee offered their full support and cooperation to the SSSA in completing the project.

Contact was then made with the Monographs Committee of the American Society of Agronomy to determine whether the proposed publication
would be suitable as a number in the series of monographs sponsored by the ASA; and contact was made with the American Society for Testing and Materials to determine whether the ASTM wished to join with the ASA in sponsorship. Approval was obtained, and work on the monograph was completed under the supervision of the SSSA committees and editorial board, with the ASA and ASTM serving as joint sponsors of the publication.

The members of the SSSA and ASTM committees who participated in development of this monograph are as follows:

Soil Science Society of America

Committees on Soil Analysis and Measurement

PHYSICAL MEASUREMENT

D. D. Evans, *Chairman*, University of Arizona, Tucson, Ariz.

D. M. Anderson, Cold Regions Research Laboratory, U. S. Army, Hanover, N. H.

G. R. Blake, University of Minnesota, St. Paul, Minn.

R. R. Bruce, ARS, USDA, and Mississippi State University, State College, Miss.

W. H. Gardner, Washington State University, Pullman, Wash.

W. R. Gardner, ARS, USDA, U. S. Salinity Laboratory, Riverside, Calif.

V. C. Jamison, ARS, USDA, Columbia, Mo.

D. B. Peters, ARS, USDA, and University of Illinois, Urbana, Ill.

J. S. Robins, ARS, USDA, Boise, Idaho

SOIL MINERAL ANALYSIS

J. L. White, *Chairman*, Purdue University, Lafayette, Ind.

I. Barshad, University of California, Berkeley, Calif.

A. H. Beavers, University of Illinois, Urbana, Ill.

G. W. Kunze, Texas A & M University, College Station, Tex.

M. M. Mortland, Michigan State University, East Lansing, Mich.

R. C. Vanden Heuvel, SCS, USDA, Soil Survey Laboratory, Beltsville, Md.

L. D. Whittig, University of California, Davis, Calif.

CHEMICAL ANALYSIS

L. E. Ensminger, *Chairman*, Auburn University, Auburn, Ala.

H. D. Chapman, University of California, Riverside, Calif.

B. N. Driskell, Denham Laboratory, University of Alabama, Tuscaloosa, Ala.

M. E. Harward, Oregon State University, Corvallis, Oregon
V. J. Kilmer, Tennessee Valley Authority, Wilson Dam, Ala.
Kirk Lawton, Michigan State University, East Lansing, Mich.
C. D. Moodie, Washington State University, Pullman, Wash.
A. B. Prince, University of New Hampshire, Durham, N. H.

SOIL MICROBIOLOGICAL METHODS

F. E. Clark, Chairman, ARS, USDA, Fort Collins, Colo.
M. Alexander, Cornell University, Ithaca, N. Y.
F. E. Broadbent, University of California, Davis, Calif.
L. R. Frederick, Iowa State University, Ames, Iowa

American Society for Testing and Materials Committee D-18
Subcommittee R-6 on Physico-Chemical Properties of Soils

D. T. Davidson, Chairman, Iowa Engineering Experiment Station, Ames, Iowa
R. L. Handy, Iowa State University, Ames, Iowa
H. A. Facci, Washington, D. C.
W. A. Goodwin, University of Tennessee, Knoxville, Tenn.
R. E. Grim, University of Illinois, Urbana, Ill.
J. H. Havens, Highway Research Laboratory, Lexington, Ky.
C. D. Jeffries, Pennsylvania State University, University Park, Pa.
A. L. Johnson, New Castle, Pa.
E. J. Kilcaley, Rensselaer Polytechnic Institute, Troy, N. Y.
T. W. Lambe, Massachusetts Institute of Technology, Cambridge, Mass.
C. E. Marshall, University of Missouri, Columbia, Mo.
J. K. Mitchell, University of California, Berkeley, Calif.
C. B. Tanner, University of Wisconsin, Madison, Wis.
T. I. Taylor, Columbia University, New York, N. Y.
H. F. Winterkorn, Princeton University, Princeton, N. J.
C. J. Woods, Electronics, Inc., Mt. Vernon, N. Y.

Immediately following approval of the project by the SSSA, the committee on physical analysis, then under the chairmanship of W. H. Gardner, prepared an outline of subject matter for the portion of the monograph to deal with physical properties. The other committees on soil analysis soon prepared outlines for their respective areas, and the individual outlines were organized into an over-all outline by the editorial board.
Authors for individual sections were selected by the standing committees, and contacts were made by chairmen of these committees. Authors were selected on the basis of their special knowledge of the subject on which they were asked to write, and the choice of methods to be described was left to them. In some instances authors include several methods for making a particular measurement and, when so, usually provide supplementary information to aid the reader in deciding which method best suits his purpose. Thus, with the exception of some ASTM methods, the methods described have not been included because of any specific official action of the Soil Science Society of America, the American Society of Agronomy, or the American Society for Testing and Materials; hence, they should not be considered to be standard or official methods of any of these Societies.

Most of the sections deal with methods of soil analysis, as the title implies. The few that do not have been included because the methods and related information they contain are of importance to people working with soils and frequently are needed by them.

Although a monograph entitled methods of analysis might be strictly a set of directions for performing the operations required to make the measurements, the editorial board was in unanimous agreement from the beginning that this style of presentation would not fulfill the total need of readers for information about the methods. Authors, therefore, were asked to include not only the specific directions for the measurements but also the principles of the method, comments on such matters as limitations, pitfalls, and precision, and reference to sources in the literature to which the reader might go for further study.

The standard pattern of treatment is followed with most subjects, but it is inapplicable for a few; and, in such instances, departures from the standard format are made. In the subject of analysis of nitrogenous gases, for example, the authors do not consider that proven methods are available; accordingly, they give no methods in detail but instead provide an analysis of the literature to serve as a basis for research to develop suitable methods.

An attempt has been made to produce a treatise that is self-sufficient, so that a reader with good background knowledge of science can obtain what he needs to know of the theory and practice without having to consult other sources, which might not be readily available. This objective has been accomplished to different degrees in the different sections. In some, the breadth of material is so great that a considerable compromise has been necessary. For example, in the subject of petrographic methods, standard techniques may be found in books on optical mineralogy. Be-
cause the material is so extensive, the author does not attempt to repeat it in the form of specific directions. Rather, he confines his remarks principally to the special aspects of petrographic methods that have to do with soils, and he makes reference to sources in the literature where the specific directions may be obtained.

Considerable thought was given to the subject of indexes of availability of plant nutrients. From the standpoint of numbers of analyses performed, such measurements undoubtedly are of first importance. Nevertheless, measurements on soils to obtain indexes of availability of plant nutrients have an empirical aspect that is not so generally present in measurements of other properties. Moreover, the number of methods in use is large, and there is relatively little standardization among different laboratories. Because it was obvious that all methods found to be useful and perhaps satisfactory in one location or another could not be included, a compromise was made, and only a few methods have been given, again at the discretion of the authors.

Manuscripts submitted by authors were reviewed by the committee chairman or by one or more other persons (usually members of the SSSA committees on soil analysis) and sometimes by both, as well as the editor-in-chief; and the comments prepared were transmitted to the authors, as is customary with journal papers. Because a period of several years was required to complete the monograph, authors were given an opportunity, immediately prior to typesetting, to make revisions in their manuscripts. A number of authors made revisions and added new material at that time.

Throughout the monograph, frequent reference is made to specific commercial products and manufacturers. Such information is included for the convenience of the reader and should not be taken as an endorsement of the products or manufacturers to the exclusion of others by the Soil Science Society of America, the American Society of Agronomy, the American Society for Testing and Materials, or the author's employer.

Special recognition is due Oscar Kemphorne for the counsel and assistance he so generously provided in connection with the parts of the monograph dealing with statistics of measurement and sampling. Similar recognition is due Donald T. Davidson, late chairman of ASTM Subcommittee R-6 on physico-chemical properties of soils, and his successor, R. L. Handy, for their contributions to the sections of the monograph dealing with soil mechanics. Thanks are due L. Boersma for his work in an editorial capacity in the area of physical properties during the temporary absence of the chairman of the committee. Thanks are due P. F. Low for his advice on technical matters. And finally, appreciation must be ex-
pressed to the many anonymous reviewers who provided their time and
talents to aid in maintaining high standards in the technical subject matter
of the monograph and to R. C. Dinauer, of the Headquarters Staff of the
American Society of Agronomy, for his painstaking job of editing the final
copy for publication.

Editorial Board

Ames, Iowa
September 1964

C. A. Black, Iowa State University, Ames, Iowa
Editor-in-Chief

D. D. Evans, University of Arizona, Tucson, Arizona
Associate Editor, Physical Properties

J. L. White, Purdue University, Lafayette, Indiana
Associate Editor, Mineralogical Properties

L. E. ENSMINGER, Auburn University, Auburn, Alabama
Associate Editor, Chemical Properties

F. E. Clark, Agricultural Research Service, U. S. Department of Agriculture, Fort Collins, Colorado
Associate Editor, Microbiological Properties
CONTRIBUTORS

Fred Adams
Associate Professor of Soil Chemistry, Department of Agronomy and Soils, Auburn University, Auburn, Alabama

M. Alexander
Associate Professor of Soil Microbiology, Department of Agronomy, Cornell University, Ithaca, New York

L. E. Allison
Soil Scientist, U. S. Salinity Laboratory, Soil and Water Conservation Research Division, Agricultural Research Service, U. S. Department of Agriculture, Riverside, California

R. R. Allmaras
Soil Scientist, North Central Soil Conservation Research Center, Soil and Water Conservation Research Division, Agricultural Research Service, U. S. Department of Agriculture, Morris, Minnesota

Jack Altman
Associate Professor of Botany and Plant Pathology, Department of Botany and Plant Pathology, Colorado State University, Fort Collins, Colorado

D. M. Anderson
Geologist, Materials Research Branch, U. S. Army Cold Regions Research and Engineering Laboratory, Hanover, New Hampshire

Edward S. Barber
Consulting Engineer, Soil Mechanics and Foundations, Arlington, Virginia

C. E. Bardsley
Associate Professor of Agronomy, South Carolina Agricultural Experiment Station, Clemson College, Clemson, South Carolina

Isaac Barshad
Soil Chemist, Department of Soils and Plant Nutrition, University of California, Berkeley, California

W. E. Beard
Chemist, Nitrogen Laboratory, Soil and Water Conservation Research Division, Agricultural Research Service, U. S. Department of Agriculture, Fort Collins, Colorado

Kenneth C. Beeson
Formerly Director, U. S. Plant, Soil and Nutrition Laboratory, Soil and Water Conservation Research Division, Agricultural Research Service, U. S. Department of Agriculture, Ithaca, New York (now with USAID to Sudan)
Contribution

Anson R. Bertrand
Chief, Southern Branch, Soil and Water Conservation Research Division, Agricultural Research Service, U. S. Department of Agriculture, University of Georgia, Athens, Georgia

C. A. Black
Professor of Soils, Department of Agronomy, Iowa State University, Ames, Iowa

G. R. Blake
Professor of Soils, Department of Soils, University of Minnesota, St. Paul, Minnesota

Louis C. Boawn

L. Boersma
Assistant Professor of Soils, Department of Soils, Oregon State University, Corvallis, Oregon

W. B. Bollen
Professor of Soil Microbiology, Department of Microbiology, Oregon State University, Corvallis, Oregon

C. A. Bower
Director, U. S. Salinity Laboratory, Soil and Water Conservation Research Division, Agricultural Research Service, U. S. Department of Agriculture, Riverside, California

J. M. Bremner
Professor of Soils, Department of Agronomy, Iowa State University, Ames, Iowa

Robert F. Brewer
Associate Chemist, Department of Soils and Plant Nutrition, University of California, Riverside, California

F. E. Broadbent
Professor of Soil Microbiology, Department of Soils and Plant Nutrition, University of California, Davis, California

C. H. M. van Bavel

F. B. Cady
Assistant Professor of Statistics, Department of Statistics, Iowa State University, Ames, Iowa

John G. Cady
Soil Scientist, Soil Survey Laboratory, Soil Conservation Service, U. S. Department of Agriculture, Beltsville, Maryland
<table>
<thead>
<tr>
<th>Name</th>
<th>Position and Affiliations</th>
</tr>
</thead>
<tbody>
<tr>
<td>L. D. Calvin</td>
<td>Professor of Statistics and Chairman, Department of Statistics, Oregon State University, Corvallis, Oregon</td>
</tr>
<tr>
<td>H. D. Chapman</td>
<td>Professor of Soils and Plant Nutrition, Department of Soils and Plant Nutrition, University of California, Riverside, California</td>
</tr>
<tr>
<td>H. H. Cheng</td>
<td>Research Associate, Department of Agronomy, Iowa State University, Ames, Iowa</td>
</tr>
<tr>
<td>W. S. Chepil (deceased)</td>
<td>Research Investigations Leader, Soil Erosion, Soil and Water Conservation Research Division, Agricultural Research Service, U. S. Department of Agriculture, Kansas State University, Manhattan, Kansas</td>
</tr>
<tr>
<td>Francis E. Clark</td>
<td>Microbiologist, Nitrogen Laboratory, Soil and Water Conservation Research Division, Agricultural Research Service, U. S. Department of Agriculture, Fort Collins, Colorado</td>
</tr>
<tr>
<td>H. T. David</td>
<td>Professor of Statistics, Department of Statistics, Iowa State University, Ames, Iowa</td>
</tr>
<tr>
<td>Donald T. Davidson (deceased)</td>
<td>Professor of Civil Engineering, Department of Civil Engineering, Iowa State University, Ames, Iowa</td>
</tr>
<tr>
<td>Paul R. Day</td>
<td>Professor of Soil Physics, Department of Soils and Plant Nutrition, University of California, Berkeley, California</td>
</tr>
<tr>
<td>L. A. Dean</td>
<td>Director, U. S. Soils Laboratory, Soil and Water Conservation Research Division, Agricultural Research Service, U. S. Department of Agriculture, Beltsville, Maryland</td>
</tr>
<tr>
<td>W. J. Dixon</td>
<td>Professor of Preventive Medicine, Health Sciences Computing Facilities, Department of Preventive Medicine, School of Medicine, University of California, Los Angeles, California</td>
</tr>
<tr>
<td>L. W. Durrell</td>
<td>Professor of Botany and Plant Pathology and Dean Emeritus, Department of Botany and Plant Pathology, Colorado State University, Fort Collins, Colorado</td>
</tr>
<tr>
<td>D. D. Evans</td>
<td>Professor, Department of Agricultural Chemistry and Soils, University of Arizona, Tucson, Arizona</td>
</tr>
</tbody>
</table>
Earl J. Felt
(deceased)
Manager of Transportation Development, Transportation Development Section, Research and Development Division, Portland Cement Association, Skokie, Illinois

L. O. Fine
Professor and Head, Department of Agronomy, South Dakota State University, Brookings, South Dakota

John G. A. Fiskell
Biochemist, Department of Soils, Agricultural Experiment Stations, University of Florida, Gainesville, Florida

Lloyd R. Frederick
Professor of Agronomy, Department of Agronomy, Iowa State University, Ames, Iowa

Walter H. Gardner
Professor of Soils, Department of Agronomy, Washington State University, Pullman, Washington

W. A. Goodwin
Research Professor, University of Tennessee, Knoxville Tennessee (now with Highway Research Board, National Cooperative Research Program, Washington, D. C.)

Walter R. Heald
Soil Scientist, U. S. Soils Laboratory, Soil and Water Conservation Research Division, Agricultural Research Service, U. S. Department of Agriculture, Beltsville, Maryland

W. G. Holtz
Assistant Chief Research Scientist, Soils Engineering Branch, Bureau of Reclamation, U. S. Department of Interior, Denver Federal Center, Denver, Colorado

M. L. Jackson
Professor of Soil Science, Department of Soil Science, University of Wisconsin, Madison, Wisconsin

Ray D. Jackson

C. M. Johnson
Chemist, Department of Soils and Plant Nutrition, University of California, Berkeley, California

Yoshinori Kanehiro
Assistant Professor of Soils, Agronomy and Soil Science Department, University of Hawaii, College of Tropical Agriculture, Honolulu, Hawaii
W. D. Kemper
Soil Scientist and Associate Professor of Soils, Soil and Water Conservation Research Division, Agricultural Research Service, U. S. Department of Agriculture, and the Department of Agronomy, Colorado State University, Fort Collins, Colorado

Oscar Kempthorne
Professor of Statistics, Department of Statistics, Iowa State University, Ames, Iowa

Victor J. Kilmer
Soil Scientist, Office of Agricultural and Chemical Development, Tennessee Valley Authority, Wilson Dam, Alabama

J. A. Kittrick
Associate Professor of Soils, Department of Agronomy, Washington State University, Pullman, Washington

Arnold Klute
Professor of Soil Physics, Department of Agronomy, University of Illinois, Urbana, Illinois

Joe Kubota

George W. Kunze
Professor of Soil Mineralogy, Department of Soil and Crop Sciences, Texas A & M University, College Station, Texas

J. D. Lancaster
Professor of Soil Chemistry and Nitrogen, Mississippi State University, State College, Mississippi

V. A. Lazar

Torrence H. MacDonald

E. O. McLean
Professor of Agronomy, Department of Agronomy, Ohio State University and the Ohio Agricultural Experiment Station, Columbus, Ohio

Ronald G. Menzel
Soil Scientist, U. S. Soils Laboratory, Soil and Water Conservation Research Division, Agricultural Research Service, U. S. Department of Agriculture, Beltsville, Maryland
CONTRIBUTORS

J. D. Menzies
Microbiologist, U. S. Soils Laboratory, Soil and Water Conservation Research Division, Agricultural Research Service, U. S. Department of Agriculture, Beltsville, Maryland

C. D. Moodie
Professor of Soils, Department of Agronomy, Washington State University, Pullman, Washington

J. L. Mortensen
Professor of Agronomy, Department of Agronomy, Ohio State University and the Ohio Agricultural Experiment Station, Columbus, Ohio

M. M. Mortland
Professor of Soil Science, Department of Soil Science, Michigan State University, East Lansing, Michigan

Alfred T. Myers

Uteana Oda

S. R. Olsen
Soil Scientist, Soil Phosphorus Laboratory, Soil and Water Conservation Research Division, Agricultural Research Service, U. S. Department of Agriculture, Colorado State University, Fort Collins, Colorado

R. V. Olson
Professor and Head, Department of Agronomy, Kansas State University, Manhattan, Kansas

Michael Peech
Professor of Soil Science, Department of Agronomy, Cornell University, Ithaca, New York

D. B. Peters
Soil Scientist and Associate Professor, Soil and Water Conservation Research Division, Agricultural Research Service, U. S. Department of Agriculture, Department of Agronomy, University of Illinois, Urbana, Illinois

R. G. Petersen
Associate Professor of Design and Analytical Experiments, Department of Experimental Statistics, North Carolina State of the University of North Carolina at Raleigh, North Carolina

Lynn K. Porter
Soil Scientist, Nitrogen Laboratory, Soil and Water Conservation Research Division, Agricultural Research Service, U. S. Department of Agriculture, Fort Collins, Colorado

P. F. Pratt
Professor and Chemist, Department of Soils and Plant Nutrition, University of California, Riverside, California
CONTRIBUTORS

Allan B. Prince Professor of Soil and Water Science, Department of Soil and Water Science, University of New Hampshire, Durham, New Hampshire

R. C. Reeve Research Investigations Leader, Soil and Water Conservation Research Division, Agricultural Research Service, U. S. Department of Agriculture, Ohio State University, Columbus, Ohio

H. M. Reisenauer Associate Research Soil Scientist, M. Theodore Kearney Foundation of Soil Science, University of California, Davis, California

C. I. Rich Professor of Agronomy, Department of Agronomy, Virginia Polytechnic Institute, Blacksburg, Virginia

L. A. Richards Physicist, U. S. Salinity Laboratory, Soil and Water Conservation Research Division, Agricultural Research Service, U. S. Department of Agriculture, Riverside, California

S. J. Richards Professor of Soil Physics, Department of Soils and Plant Nutrition, University of California, Riverside, California

G. Donald Sherman Associate Director of the Agricultural Experiment Station and Senior Professor of Soils, University of Hawaii, College of Tropical Agriculture, Honolulu, Hawaii

George F. Sowers Professor of Civil Engineering and Consulting Engineer, School of Civil Engineering, Georgia Institute of Technology, Atlanta, Georgia (also Law Engineering Testing Co., Atlanta, Georgia)

Alston W. Specht Chemist, U. S. Soils Laboratory, Soil and Water Conservation Research Division, Agricultural Research Service, U. S. Department of Agriculture, Beltsville, Maryland

F. J. Stevenson Professor of Soil Chemistry, Department of Agronomy, University of Illinois, Urbana, Illinois
CONTRIBUTORS

G. Stotzky
Chairman, Research Department, Kitchawan Research Laboratory, Brooklyn Botanic Garden, Ossining, New York

P. R. Stout
Professor and Head, Department of Soils and Plant Nutrition, University of California, Davis, California

Sterling A. Taylor
Professor of Soil Physics, Department of Agronomy, Utah State University, Logan, Utah

R. C. Vanden Heuvel
Soil Scientist, Soil Survey Laboratory, Soil Conservation Service, U. S. Department of Agriculture, Beltsville, Maryland

Frank G. Viets, Jr.
Research Investigations Leader, Soil and Water Conservation Research Division, Agricultural Research Service, U. S. Department of Agriculture, Fort Collins, Colorado

James A. Vomocil
Associate Professor of Soil Physics, Department of Soils and Plant Nutrition, University of California, Davis, California

John I. Wear
Soil Chemist, Department of Agronomy and Soils, Auburn University, Auburn, Alabama

L. V. Wilcox
Formerly Assistant to Director, U. S. Salinity Laboratory, Soil and Water Conservation Research Division, Agricultural Research Service, U. S. Department of Agriculture, Riverside, California (now retired)

J. L. White
Professor of Agronomy, Department of Agronomy, Purdue University, Lafayette, Indiana

L. D. Whittig
Associate Soil Chemist, Department of Soils and Plant Nutrition, University of California, Davis, California

Tyler A. Woolley
Professor, Department of Zoology, Colorado State University, Fort Collins, Colorado
CONTENTS

Part 2

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOREWORD</td>
</tr>
<tr>
<td>PREFACE</td>
</tr>
<tr>
<td>CONTRIBUTORS</td>
</tr>
</tbody>
</table>

52 Elemental Analysis by X-Ray Emission Spectrography

R. C. Vanden Heuvel

52-1 Introduction	771
52-2 Principles	772
52-3 Method	805
52-4 Literature Cited	819

53 Elemental Analysis by Optical Emission Spectrography

Alston W. Specht, Alfred T. Myers, and Uteana Oda

53-1 Introduction	822
53-2 Principles	822
53-3 Instrumentation	825
53-4 Method for Elemental Analysis of Soil Extracts	827
53-5 Method for Total Analysis	837
53-6 Semiquantitative Method for Total Analysis	846
53-7 Literature Cited	847

54 Elemental Analysis by Flame Photometry

C. I. Rich

54-1 Introduction	849
54-2 Principles	849
54-3 Instrumentation	853
54-4 Preparation of Solution	856
54-5 Methods for Overcoming Spectral Interferences	858
54-6 Wavelength, Flame Conditions, and Interferences for Individual Elements	860
54-7 Standard Solutions	861
54-8 Readings for Routine Analysis	861
54-9 General Methods for Specific Extracts	862
54-10 Precision and Accuracy in Flame Photometry	864
54-11 Literature Cited	864
CONTENTS, PART 2

55 Absorption Spectrophotometry

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Author</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>55-1</td>
<td>Introduction</td>
<td>Allan B. Prince</td>
<td>866</td>
</tr>
<tr>
<td>55-2</td>
<td>Principles</td>
<td>Allan B. Prince</td>
<td>867</td>
</tr>
<tr>
<td>55-3</td>
<td>Filter Photometry</td>
<td>Allan B. Prince</td>
<td>870</td>
</tr>
<tr>
<td>55-4</td>
<td>Spectrophotometry</td>
<td>Allan B. Prince</td>
<td>875</td>
</tr>
<tr>
<td>55-5</td>
<td>Calibration</td>
<td>Allan B. Prince</td>
<td>877</td>
</tr>
<tr>
<td>55-6</td>
<td>Literature Cited</td>
<td>Allan B. Prince</td>
<td>878</td>
</tr>
</tbody>
</table>

56 Elemental Analysis by Polarography

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Author</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>56-1</td>
<td>General Introduction</td>
<td>Ronald G. Menzel</td>
<td>879</td>
</tr>
<tr>
<td>56-2</td>
<td>Principles</td>
<td>Ronald G. Menzel</td>
<td>880</td>
</tr>
<tr>
<td>56-3</td>
<td>Instrumentation</td>
<td>Ronald G. Menzel</td>
<td>883</td>
</tr>
<tr>
<td>56-4</td>
<td>Sample Preparation</td>
<td>Ronald G. Menzel</td>
<td>884</td>
</tr>
<tr>
<td>56-5</td>
<td>Calibration</td>
<td>Ronald G. Menzel</td>
<td>885</td>
</tr>
<tr>
<td>56-6</td>
<td>Simultaneous Determination of Copper, Nickel, Zinc, Cobalt, and Manganese</td>
<td>Ronald G. Menzel</td>
<td>885</td>
</tr>
<tr>
<td>56-7</td>
<td>Dissolved Oxygen in Soil Solution</td>
<td>Ronald G. Menzel</td>
<td>888</td>
</tr>
<tr>
<td>56-8</td>
<td>Literature Cited</td>
<td>Ronald G. Menzel</td>
<td>890</td>
</tr>
</tbody>
</table>

57 Cation-Exchange Capacity

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Author</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>57-1</td>
<td>Introduction</td>
<td>H. D. Chapman</td>
<td>891</td>
</tr>
<tr>
<td>57-2</td>
<td>Cation-Exchange Capacity by Ammonium Saturation</td>
<td>H. D. Chapman</td>
<td>894</td>
</tr>
<tr>
<td>57-3</td>
<td>Cation-Exchange Capacity by Sodium Saturation</td>
<td>H. D. Chapman</td>
<td>899</td>
</tr>
<tr>
<td>57-4</td>
<td>Cation-Exchange Capacity by Summation</td>
<td>H. D. Chapman</td>
<td>900</td>
</tr>
<tr>
<td>57-5</td>
<td>Literature Cited</td>
<td>H. D. Chapman</td>
<td>900</td>
</tr>
</tbody>
</table>

58 Total Exchangeable Bases

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Author</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>58-1</td>
<td>Introduction</td>
<td>H. D. Chapman</td>
<td>902</td>
</tr>
<tr>
<td>58-2</td>
<td>Method</td>
<td>H. D. Chapman</td>
<td>903</td>
</tr>
<tr>
<td>58-3</td>
<td>Literature Cited</td>
<td>H. D. Chapman</td>
<td>904</td>
</tr>
</tbody>
</table>

59 Exchange Acidity

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Author</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>59-1</td>
<td>Introduction</td>
<td>Michael Pech</td>
<td>905</td>
</tr>
<tr>
<td>59-2</td>
<td>Residual-Carbonate Method</td>
<td>Michael Pech</td>
<td>907</td>
</tr>
<tr>
<td>59-3</td>
<td>Barium Chloride-Triethanolamine Method</td>
<td>Michael Pech</td>
<td>910</td>
</tr>
<tr>
<td>59-4</td>
<td>Ammonium Acetate Method</td>
<td>Michael Pech</td>
<td>912</td>
</tr>
<tr>
<td>59-5</td>
<td>Literature Cited</td>
<td>Michael Pech</td>
<td>912</td>
</tr>
</tbody>
</table>

60 Hydrogen-Ion Activity

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Author</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>60-1</td>
<td>Introduction</td>
<td>Michael Pech</td>
<td>914</td>
</tr>
<tr>
<td>60-2</td>
<td>Factors Affecting Soil pH</td>
<td>Michael Pech</td>
<td>917</td>
</tr>
<tr>
<td>60-3</td>
<td>Soil pH by Glass Electrode pH Meter</td>
<td>Michael Pech</td>
<td>920</td>
</tr>
<tr>
<td>60-4</td>
<td>Soil pH by Indicators</td>
<td>Michael Pech</td>
<td>924</td>
</tr>
<tr>
<td>60-5</td>
<td>Literature Cited</td>
<td>Michael Pech</td>
<td>925</td>
</tr>
</tbody>
</table>
CONTENTS, PART 2

61 Lime Requirement

61-1 Introduction ... 927
61-2 Barium Chloride-Triethanolamine Method 928
61-3 Soil pH Method ... 929
61-4 Literature Cited ... 932

62 Soluble Salts

62-1 Saturation Extract and Other Aqueous Extracts 933
62-2 Soluble Salts by Electrical Conductivity 936
62-3 Soluble Constituents in Aqueous Extracts 940
62-4 Literature Cited ... 951

63 Fusion With Sodium Carbonate for Total Elemental Analysis

63-1 Introduction .. 952
63-2 Principles ... 952
63-3 Method for Preparation of Sample 953
63-4 Method for Loss on Ignition 954
63-5 Method for Pretreatment of Soils High in Iron Oxide and Manganese Oxide ... 955
63-6 Method for Fusion With Sodium Carbonate 955
63-7 Method for Preparation of Fusion for Analysis 957
63-8 Literature Cited ... 958

64 Silicon

64-1 Introduction .. 959
64-2 Principles ... 959
64-3 Method .. 960
64-4 Literature Cited ... 962

65 Iron

65-1 Total Iron .. 963
65-2 Exchangeable Iron ... 967
65-3 Availability Indexes ... 969
65-4 Free Iron Oxides .. 971
65-5 Literature Cited ... 973

66 Titanium

66-1 Introduction .. 974
66-2 Principles ... 974
66-3 Acid Digestion Method 975
66-4 Fusion Method ... 976
66-5 Literature Cited ... 977
CONTENTS, PART 2

67 Aluminum
 E. O. McLean

 67-1 General Introduction 978
 67-2 Total Aluminum 980
 67-3 Exchangeable Aluminum 985
 67-4 Extractable Aluminum 994
 67-5 Literature Cited 997

68 Calcium and Magnesium
 Walter R. Heald

 68-1 Introduction 999
 68-2 Principles 999
 68-3 Method 1003
 68-4 Availability Indexes 1008
 68-5 Literature Cited 1009

69 Manganese
 Fred Adams

 69-1 Introduction 1011
 69-2 Total Manganese 1011
 69-3 Method for Exchangeable Manganese 1013
 69-4 Availability Indexes 1014
 69-5 General Comments 1016
 69-6 Literature Cited 1017

70 Digestion With Hydrofluoric and Perchloric Acids for Total
 Potassium and Sodium

 P. F. Pratt

 70-1 Introduction 1019
 70-2 Method 1020
 70-3 Literature Cited 1021

71 Potassium
 P. F. Pratt

 71-1 General Introduction 1022
 71-2 Total Potassium 1022
 71-3 Exchangeable Potassium 1025
 71-4 Availability Indexes 1027
 71-5 Literature Cited 1030

72 Sodium
 P. F. Pratt

 72-1 General Introduction 1031
 72-2 Total Sodium 1031
 72-3 Exchangeable Sodium 1033
 72-4 Availability Indexes 1034
 72-5 Literature Cited 1034
CONTENTS, PART 2

73 Phosphorus

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>73-1</td>
<td>Introduction</td>
<td>1035</td>
</tr>
<tr>
<td>73-2</td>
<td>Total Phosphorus</td>
<td>1036</td>
</tr>
<tr>
<td>73-3</td>
<td>Organic Phosphorus</td>
<td>1038</td>
</tr>
<tr>
<td>73-4</td>
<td>Availability Indexes</td>
<td>1040</td>
</tr>
<tr>
<td>73-5</td>
<td>Literature Cited</td>
<td>1048</td>
</tr>
</tbody>
</table>

S. R. Olsen and L. A. Dean

74 Molybdenum

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>74-1</td>
<td>Total Molybdenum</td>
<td>1050</td>
</tr>
<tr>
<td>74-2</td>
<td>Molybdenum Availability Indexes</td>
<td>1054</td>
</tr>
<tr>
<td>74-3</td>
<td>Literature Cited</td>
<td>1057</td>
</tr>
</tbody>
</table>

H. M. Reisenauer

75 Boron

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>75-1</td>
<td>Introduction</td>
<td>1059</td>
</tr>
<tr>
<td>75-2</td>
<td>Principles</td>
<td>1059</td>
</tr>
<tr>
<td>75-3</td>
<td>Method for Total Boron</td>
<td>1060</td>
</tr>
<tr>
<td>75-4</td>
<td>Method for Hot-Water-Soluble Boron</td>
<td>1062</td>
</tr>
<tr>
<td>75-5</td>
<td>Comments</td>
<td>1063</td>
</tr>
<tr>
<td>75-6</td>
<td>Literature Cited</td>
<td>1063</td>
</tr>
</tbody>
</table>

John I. Wear

76 Cobalt

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>76-1</td>
<td>Introduction</td>
<td>1064</td>
</tr>
<tr>
<td>76-2</td>
<td>Colorimetric Analysis Using Ortho-Nitrosocresol</td>
<td>1065</td>
</tr>
<tr>
<td>76-3</td>
<td>Colorimetric Analysis Using Nitroso-R-Salt</td>
<td>1074</td>
</tr>
<tr>
<td>76-4</td>
<td>Availability Index</td>
<td>1075</td>
</tr>
<tr>
<td>76-5</td>
<td>Literature Cited</td>
<td>1076</td>
</tr>
</tbody>
</table>

Kenneth C. Beeson, Joe Kubota, and V. A. Lazar

77 Copper

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>77-1</td>
<td>Total Copper</td>
<td>1078</td>
</tr>
<tr>
<td>77-2</td>
<td>Availability Indexes</td>
<td>1084</td>
</tr>
<tr>
<td>77-3</td>
<td>Literature Cited</td>
<td>1089</td>
</tr>
</tbody>
</table>

John G. A. Fiskell

78 Zinc

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>78-1</td>
<td>Introduction</td>
<td>1090</td>
</tr>
<tr>
<td>78-2</td>
<td>Total Zinc</td>
<td>1091</td>
</tr>
<tr>
<td>78-3</td>
<td>Availability Indexes</td>
<td>1096</td>
</tr>
<tr>
<td>78-4</td>
<td>Literature Cited</td>
<td>1100</td>
</tr>
</tbody>
</table>

Frank G. Viets, Jr., and Louis C. Boawn

79 Sulfur

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>79-1</td>
<td>General Introduction</td>
<td>1102</td>
</tr>
<tr>
<td>79-2</td>
<td>Total Sulfur</td>
<td>1103</td>
</tr>
<tr>
<td>79-3</td>
<td>Organic Sulfur</td>
<td>1108</td>
</tr>
<tr>
<td>79-4</td>
<td>Availability Indexes</td>
<td>1110</td>
</tr>
<tr>
<td>79-5</td>
<td>Literature Cited</td>
<td>1114</td>
</tr>
</tbody>
</table>

C. E. Bardsley and J. D. Lancaster
CONTENTS, PART 2

80 Selenium

80-1 Introduction ... 1117
80-2 Total Selenium ... 1118
80-3 Availability Indexes 1122
80-4 Literature Cited ... 1123

81 Chlorine and Bromine

P. R. Stout and C. M. Johnson

81-1 Introduction ... 1124
81-2 Principles ... 1125
81-3 Potentiometric Method for Chloride 1127
81-4 Microdiffusion Method for Chloride and Bromide 1130
81-5 Microdiffusion Method for Bromide 1133
81-6 Literature Cited ... 1134

82 Fluorine

Robert F. Brewer

82-1 Introduction ... 1135
82-2 Total Fluorine ... 1136
82-3 Water-Soluble Fluorine 1145
82-4 Literature Cited ... 1147

83 Total Nitrogen

J. M. Bremner

83-1 Introduction ... 1149
83-2 Principles ... 1152
83-3 Regular Macro-Kjeldahl Method 1162
83-4 Macro-Kjeldahl Method to Include Nitrate 1164
83-5 Macro-Kjeldahl Method to Include Nitrate and Nitrite 1164
83-6 Comments on Macro-Kjeldahl Methods 1166
83-7 Semimicro-Kjeldahl Method 1171
83-8 Addendum ... 1175
83-9 Literature Cited ... 1176

84 Inorganic Forms of Nitrogen

J. M. Bremner

84-1 General Introduction 1179
84-2 Extraction of Exchangeable Ammonium, Nitrate, and Nitrite 1185
84-3 Exchangeable Ammonium, Nitrate, and Nitrite by Steam Distillation Methods 1191
84-4 Exchangeable Ammonium, Nitrate, and Nitrite by Microdiffusion Methods 1206
84-5 Nitrate by Colorimetric Methods 1212
84-6 Nitrite by Colorimetric Methods 1219
84-7 Nonexchangeable Ammonium 1224
84-8 Literature Cited ... 1232
CONTENTS, PART 2

85 Organic Forms of Nitrogen

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Author</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>85-1</td>
<td>Introduction</td>
<td>J. M. Bremner</td>
<td>1238</td>
</tr>
<tr>
<td>85-2</td>
<td>Principles</td>
<td></td>
<td>1241</td>
</tr>
<tr>
<td>85-3</td>
<td>Acid Hydrolysis Method</td>
<td></td>
<td>1247</td>
</tr>
<tr>
<td>85-4</td>
<td>Literature Cited</td>
<td></td>
<td>1254</td>
</tr>
</tbody>
</table>

86 Isotope-Ratio Analysis of Nitrogen in Nitrogen-15 Tracer Investigations

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Author</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>86-1</td>
<td>General Introduction</td>
<td>J. M. Bremner</td>
<td>1256</td>
</tr>
<tr>
<td>86-2</td>
<td>General Principles</td>
<td></td>
<td>1259</td>
</tr>
<tr>
<td>86-3</td>
<td>Conversion of Labeled Nitrogen to Ammonium</td>
<td></td>
<td>1262</td>
</tr>
<tr>
<td>86-4</td>
<td>Conversion of Ammonium to Nitrogen Gas</td>
<td></td>
<td>1269</td>
</tr>
<tr>
<td>86-5</td>
<td>Determination of Isotopic Composition of Nitrogen Gas</td>
<td></td>
<td>1274</td>
</tr>
<tr>
<td>86-6</td>
<td>Addendum</td>
<td></td>
<td>1282</td>
</tr>
<tr>
<td>86-7</td>
<td>Literature Cited</td>
<td></td>
<td>1283</td>
</tr>
</tbody>
</table>

87 Gaseous Forms of Nitrogen

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>87-1</td>
<td>General Introduction</td>
<td>H. H. Cheng and J. M. Bremner</td>
<td>1287</td>
</tr>
<tr>
<td>87-2</td>
<td>Chemical Methods</td>
<td></td>
<td>1289</td>
</tr>
<tr>
<td>87-3</td>
<td>Physical Methods</td>
<td></td>
<td>1304</td>
</tr>
<tr>
<td>87-4</td>
<td>Literature Cited</td>
<td></td>
<td>1318</td>
</tr>
</tbody>
</table>

88 Nitrogen Availability Indexes

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Author</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>88-1</td>
<td>Introduction</td>
<td>J. M. Bremner</td>
<td>1324</td>
</tr>
<tr>
<td>88-2</td>
<td>Principles</td>
<td></td>
<td>1338</td>
</tr>
<tr>
<td>88-3</td>
<td>Method</td>
<td></td>
<td>1339</td>
</tr>
<tr>
<td>88-4</td>
<td>Literature Cited</td>
<td></td>
<td>1341</td>
</tr>
</tbody>
</table>

89 Total Carbon

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>89-1</td>
<td>General Introduction</td>
<td>L. E. Allison, W. B. Bollen, and C. D. Moodie</td>
<td>1346</td>
</tr>
<tr>
<td>89-2</td>
<td>Total Carbon by Wet Combustion</td>
<td></td>
<td>1347</td>
</tr>
<tr>
<td>89-3</td>
<td>Total Carbon by Dry Combustion</td>
<td></td>
<td>1353</td>
</tr>
<tr>
<td>89-4</td>
<td>Literature Cited</td>
<td></td>
<td>1365</td>
</tr>
</tbody>
</table>

90 Organic Carbon

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Author</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>90-1</td>
<td>General Introduction</td>
<td>L. E. Allison</td>
<td>1367</td>
</tr>
<tr>
<td>90-2</td>
<td>Combustion Methods With Measurement of Carbon Dioxide</td>
<td></td>
<td>1368</td>
</tr>
<tr>
<td>90-3</td>
<td>Walkley-Black Method</td>
<td></td>
<td>1372</td>
</tr>
<tr>
<td>90-4</td>
<td>Schollenberger Method</td>
<td></td>
<td>1376</td>
</tr>
<tr>
<td>90-5</td>
<td>Literature Cited</td>
<td></td>
<td>1378</td>
</tr>
</tbody>
</table>
CONTENTS, PART 2

91 Carbonate
L. E. Allison and C. D. Moodie

91-1 Introduction ... 1379
91-2 Vacuum-Distillation and Titration Method 1380
91-3 Gravimetric Method 1385
91-4 Acid-Neutralization Method 1387
91-5 Gravimetric Method for Loss of Carbon Dioxide 1388
91-6 Volumetric Calcimeter Method 1389
91-7 Pressure-Calcimeter Method 1392
91-8 Literature Cited .. 1396

92 Organic Matter
F. E. Broadbent

92-1 Introduction ... 1397
92-2 Principles .. 1398
92-3 Method .. 1398
92-4 Literature Cited .. 1400

93 Partial Extraction of Organic Matter
J. L. Mortensen

93-1 Introduction ... 1401
93-2 Composition and Solubility of Soil Organic Matter 1402
93-3 Pretreatment ... 1403
93-4 Extractants .. 1404
93-5 Literature Cited .. 1407

94 Gross Chemical Fractionation of Organic Matter
F. J. Stevenson

94-1 General Introduction 1409
94-2 Proximate Analysis 1409
94-3 Fractionation of Humus 1414
94-4 Fractionation of Fulvic Acid 1417
94-5 Literature Cited .. 1420

95 Inositol Hexaphosphate
F. J. Stevenson

95-1 Introduction ... 1422
95-2 Principles .. 1423
95-3 Method .. 1424
95-4 Literature Cited .. 1427

96 Amino Sugars
F. J. Stevenson

96-1 Introduction ... 1429
96-2 Colorimetric Method 1429
96-3 Alkaline Decomposition Method 1433
96-4 Literature Cited .. 1436
CONTENTS, PART 2

97 Amino Acids

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Author</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>97-1</td>
<td>Introduction</td>
<td>F. J. Stevenson</td>
<td>1437</td>
</tr>
<tr>
<td>97-2</td>
<td>Distribution of Nitrogen According to the Van Slyke Method</td>
<td></td>
<td>1438</td>
</tr>
<tr>
<td>97-3</td>
<td>Ion Exchange Chromatography of the Amino Acids in Soil Hydrolysates</td>
<td></td>
<td>1443</td>
</tr>
<tr>
<td>97-4</td>
<td>Free Amino Acids</td>
<td></td>
<td>1448</td>
</tr>
<tr>
<td>97-5</td>
<td>Literature Cited</td>
<td></td>
<td>1450</td>
</tr>
</tbody>
</table>

98 Microbial Populations by Direct Microscopy

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Author</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>98-1</td>
<td>General Introduction</td>
<td>Lloyd R. Frederick</td>
<td>1452</td>
</tr>
<tr>
<td>98-2</td>
<td>Thin-Section Technique</td>
<td></td>
<td>1453</td>
</tr>
<tr>
<td>98-3</td>
<td>Smear-Ratio Technique</td>
<td></td>
<td>1455</td>
</tr>
<tr>
<td>98-4</td>
<td>Contact-Slide Technique</td>
<td></td>
<td>1457</td>
</tr>
<tr>
<td>98-5</td>
<td>Literature Cited</td>
<td></td>
<td>1459</td>
</tr>
</tbody>
</table>

99 Agar-Plate Method for Total Microbial Count

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Author</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>99-1</td>
<td>Introduction</td>
<td>Francis E. Clark</td>
<td>1460</td>
</tr>
<tr>
<td>99-2</td>
<td>Principles</td>
<td></td>
<td>1461</td>
</tr>
<tr>
<td>99-3</td>
<td>Method</td>
<td></td>
<td>1462</td>
</tr>
<tr>
<td>99-4</td>
<td>Literature Cited</td>
<td></td>
<td>1466</td>
</tr>
</tbody>
</table>

100 Most-Probable-Number Method for Microbial Populations

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Author</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>100-1</td>
<td>Introduction</td>
<td>M. Alexander</td>
<td>1467</td>
</tr>
<tr>
<td>100-2</td>
<td>Principles</td>
<td></td>
<td>1467</td>
</tr>
<tr>
<td>100-3</td>
<td>Method</td>
<td></td>
<td>1469</td>
</tr>
<tr>
<td>100-4</td>
<td>Literature Cited</td>
<td></td>
<td>1472</td>
</tr>
</tbody>
</table>

101 Aerobic Spore-Forming Bacteria

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Author</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>101-1</td>
<td>Introduction</td>
<td>Francis E. Clark</td>
<td>1473</td>
</tr>
<tr>
<td>101-2</td>
<td>Principles</td>
<td></td>
<td>1473</td>
</tr>
<tr>
<td>101-3</td>
<td>Method</td>
<td></td>
<td>1475</td>
</tr>
</tbody>
</table>

102 Nitrifying Bacteria

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Author</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>102-1</td>
<td>Introduction</td>
<td>M. Alexander and Francis E. Clark</td>
<td>1477</td>
</tr>
<tr>
<td>102-2</td>
<td>Principles</td>
<td></td>
<td>1478</td>
</tr>
<tr>
<td>102-3</td>
<td>Method for Most Probable Number of Nitrosomonas</td>
<td>M. Alexander and Francis E. Clark</td>
<td>1479</td>
</tr>
<tr>
<td>102-4</td>
<td>Method for Most Probable Number of Nitrobacter</td>
<td>M. Alexander and Francis E. Clark</td>
<td>1480</td>
</tr>
<tr>
<td>102-5</td>
<td>Method for Isolation of Nitrosomonas in Pure Culture</td>
<td>M. Alexander and Francis E. Clark</td>
<td>1481</td>
</tr>
<tr>
<td>102-6</td>
<td>Method for Isolation of Nitrobacter in Pure Culture</td>
<td>M. Alexander and Francis E. Clark</td>
<td>1482</td>
</tr>
<tr>
<td>102-7</td>
<td>Comments</td>
<td></td>
<td>1482</td>
</tr>
<tr>
<td>102-8</td>
<td>Literature Cited</td>
<td></td>
<td>1483</td>
</tr>
</tbody>
</table>
103 Denitrifying Bacteria

M. Alexander

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>103-1</td>
<td>Introduction</td>
<td>1484</td>
</tr>
<tr>
<td>103-2</td>
<td>Principles</td>
<td>1484</td>
</tr>
<tr>
<td>103-3</td>
<td>Method</td>
<td>1485</td>
</tr>
<tr>
<td>103-4</td>
<td>Literature Cited</td>
<td>1486</td>
</tr>
</tbody>
</table>

104 Rhizobia

Francis E. Clark

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>104-1</td>
<td>Introduction</td>
<td>1487</td>
</tr>
<tr>
<td>104-2</td>
<td>Principles</td>
<td>1487</td>
</tr>
<tr>
<td>104-3</td>
<td>Method for Isolating Rhizobia from Root Nodules</td>
<td>1488</td>
</tr>
<tr>
<td>104-4</td>
<td>Method for Detecting Rhizobia in Soil</td>
<td>1489</td>
</tr>
<tr>
<td>104-5</td>
<td>Method for Most Probable Number of Rhizobia in Soil</td>
<td>1490</td>
</tr>
<tr>
<td>104-6</td>
<td>Method for Culture of Rhizobia From Soil</td>
<td>1491</td>
</tr>
<tr>
<td>104-7</td>
<td>Literature Cited</td>
<td>1492</td>
</tr>
</tbody>
</table>

105 Azotobacter

Francis E. Clark

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>105-1</td>
<td>Introduction</td>
<td>1493</td>
</tr>
<tr>
<td>105-2</td>
<td>Principles</td>
<td>1493</td>
</tr>
<tr>
<td>105-3</td>
<td>Soil-Plaque or Mud-Pie Method</td>
<td>1494</td>
</tr>
<tr>
<td>105-4</td>
<td>Plate-Count Method</td>
<td>1495</td>
</tr>
<tr>
<td>105-5</td>
<td>Most-Probable-Number Method</td>
<td>1496</td>
</tr>
<tr>
<td>105-6</td>
<td>Literature Cited</td>
<td>1497</td>
</tr>
</tbody>
</table>

106 Actinomycetes

Francis E. Clark

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>106-1</td>
<td>Introduction</td>
<td>1498</td>
</tr>
<tr>
<td>106-2</td>
<td>Method</td>
<td>1499</td>
</tr>
<tr>
<td>106-3</td>
<td>Literature Cited</td>
<td>1501</td>
</tr>
</tbody>
</table>

107 Fungi

J. D. Menzies

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>107-1</td>
<td>Introduction</td>
<td>1502</td>
</tr>
<tr>
<td>107-2</td>
<td>Principles</td>
<td>1503</td>
</tr>
<tr>
<td>107-3</td>
<td>Method</td>
<td>1504</td>
</tr>
<tr>
<td>107-4</td>
<td>Literature Cited</td>
<td>1505</td>
</tr>
</tbody>
</table>

108 Algae

Francis E. Clark and L. W. Durrell

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>108-1</td>
<td>Introduction</td>
<td>1506</td>
</tr>
<tr>
<td>108-2</td>
<td>Soil-Block Method</td>
<td>1507</td>
</tr>
<tr>
<td>108-3</td>
<td>Most-Probable-Number Method</td>
<td>1509</td>
</tr>
<tr>
<td>108-4</td>
<td>Direct Fluorescence Microscopy</td>
<td>1510</td>
</tr>
<tr>
<td>108-5</td>
<td>Literature Cited</td>
<td>1512</td>
</tr>
</tbody>
</table>
CONTENTS, PART 2

109 Protozoa

FRANCIS E. CLARK AND W. E. BEARD

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>109-1 Introduction</td>
<td>1513</td>
</tr>
<tr>
<td>109-2 Method</td>
<td>1514</td>
</tr>
<tr>
<td>109-3 Literature Cited</td>
<td>1516</td>
</tr>
</tbody>
</table>

110 Nematodes

JACK ALTMAN

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>110-1 Introduction</td>
<td>1517</td>
</tr>
<tr>
<td>110-2 Baermann Funnel Technique</td>
<td>1518</td>
</tr>
<tr>
<td>110-3 Wet Sieving Technique, or Tyler Screen Method</td>
<td>1520</td>
</tr>
<tr>
<td>110-4 Literature Cited</td>
<td>1523</td>
</tr>
</tbody>
</table>

111 Mites and Other Microarthropods

TYLER A. WOOLLEY

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>111-1 Introduction</td>
<td>1524</td>
</tr>
<tr>
<td>111-2 Principles</td>
<td>1525</td>
</tr>
<tr>
<td>111-3 Methods</td>
<td>1526</td>
</tr>
<tr>
<td>111-4 Comments</td>
<td>1533</td>
</tr>
<tr>
<td>111-5 Literature Cited</td>
<td>1535</td>
</tr>
</tbody>
</table>

112 Enzymes

LYNN K. PORTER

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>112-1 Introduction</td>
<td>1536</td>
</tr>
<tr>
<td>112-2 Principles</td>
<td>1537</td>
</tr>
<tr>
<td>112-3 Method for Urease Activity</td>
<td>1545</td>
</tr>
<tr>
<td>112-4 Literature Cited</td>
<td>1547</td>
</tr>
</tbody>
</table>

113 Microbial Respiration

G. STOTZKY

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>113-1 Introduction</td>
<td>1550</td>
</tr>
<tr>
<td>113-2 Field versus Laboratory Measurements</td>
<td>1552</td>
</tr>
<tr>
<td>113-3 Incubation Techniques</td>
<td>1553</td>
</tr>
<tr>
<td>113-4 Analysis for Carbon Dioxide</td>
<td>1556</td>
</tr>
<tr>
<td>113-5 Analysis for Oxygen</td>
<td>1558</td>
</tr>
<tr>
<td>113-6 Method for Carbon Dioxide Evolution</td>
<td>1562</td>
</tr>
<tr>
<td>113-7 Method for Respiratory Quotient</td>
<td>1566</td>
</tr>
<tr>
<td>113-8 Literature Cited</td>
<td>1569</td>
</tr>
</tbody>
</table>

SUBJECT INDEX

xliii
CONTENTS

Part 1

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Author(s)</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Errors of Observation</td>
<td>Oscar Kempthorne and R. R. Allmaras</td>
<td>1-23</td>
</tr>
<tr>
<td>2</td>
<td>Bias</td>
<td>R. R. Allmaras</td>
<td>24-42</td>
</tr>
<tr>
<td>3</td>
<td>Extraneous Values</td>
<td>W. J. Dixon</td>
<td>43-49</td>
</tr>
</tbody>
</table>
CONTENTS, PART 1

4 Operator Variation

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Author</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-1</td>
<td>Introduction</td>
<td>C. A. Black</td>
<td>50</td>
</tr>
<tr>
<td>4-2</td>
<td>Example</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>4-3</td>
<td>Causes</td>
<td></td>
<td>51</td>
</tr>
<tr>
<td>4-4</td>
<td>Remedies</td>
<td></td>
<td>52</td>
</tr>
<tr>
<td>4-5</td>
<td>Literature Cited</td>
<td></td>
<td>53</td>
</tr>
</tbody>
</table>

5 Sampling

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-1</td>
<td>Introduction</td>
<td>R. G. Petersen and L. D. Calvin</td>
<td>54</td>
</tr>
<tr>
<td>5-2</td>
<td>Variation of Soils</td>
<td></td>
<td>54</td>
</tr>
<tr>
<td>5-3</td>
<td>Sampling Plans</td>
<td></td>
<td>56</td>
</tr>
<tr>
<td>5-4</td>
<td>Sources of Errors</td>
<td></td>
<td>66</td>
</tr>
<tr>
<td>5-5</td>
<td>Subsampling</td>
<td></td>
<td>66</td>
</tr>
<tr>
<td>5-6</td>
<td>Composite Samples</td>
<td></td>
<td>70</td>
</tr>
<tr>
<td>5-7</td>
<td>Literature Cited</td>
<td></td>
<td>71</td>
</tr>
</tbody>
</table>

6 Calibration

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-1</td>
<td>The Nature of Calibration</td>
<td>H. T. David and F. B. Cady</td>
<td>73</td>
</tr>
<tr>
<td>6-2</td>
<td>Statistical Aspects of Calibration</td>
<td></td>
<td>74</td>
</tr>
<tr>
<td>6-3</td>
<td>Examples</td>
<td></td>
<td>76</td>
</tr>
<tr>
<td>6-4</td>
<td>Literature Cited</td>
<td></td>
<td>81</td>
</tr>
</tbody>
</table>

7 Water Content

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Author</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-1</td>
<td>General Introduction</td>
<td>Walter H. Gardner</td>
<td>82</td>
</tr>
<tr>
<td>7-2</td>
<td>Direct Methods</td>
<td></td>
<td>84</td>
</tr>
<tr>
<td>7-3</td>
<td>Indirect Methods</td>
<td></td>
<td>98</td>
</tr>
<tr>
<td>7-4</td>
<td>Literature Cited</td>
<td></td>
<td>125</td>
</tr>
</tbody>
</table>

8 Physical Condition of Water in Soil

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Author</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-1</td>
<td>General Introduction</td>
<td>L. A. Richards</td>
<td>128</td>
</tr>
<tr>
<td>8-2</td>
<td>Water Retentivity of Soil at Specified Values of Matric Suction</td>
<td></td>
<td>131</td>
</tr>
<tr>
<td>8-3</td>
<td>Freezing Point of Water in Soil</td>
<td></td>
<td>137</td>
</tr>
<tr>
<td>8-4</td>
<td>Vapor Pressure of Water in Soil</td>
<td></td>
<td>140</td>
</tr>
<tr>
<td>8-5</td>
<td>Literature Cited</td>
<td></td>
<td>151</td>
</tr>
</tbody>
</table>

9 Soil Suction Measurements With Tensiometers

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Author</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9-1</td>
<td>Introduction</td>
<td>S. J. Richards</td>
<td>153</td>
</tr>
<tr>
<td>9-2</td>
<td>Principles</td>
<td></td>
<td>154</td>
</tr>
<tr>
<td>9-3</td>
<td>Method</td>
<td></td>
<td>156</td>
</tr>
<tr>
<td>9-4</td>
<td>Applications</td>
<td></td>
<td>160</td>
</tr>
<tr>
<td>9-5</td>
<td>Literature Cited</td>
<td></td>
<td>163</td>
</tr>
</tbody>
</table>
CONTENTS, PART 1

10 Heat of Immersion

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-1</td>
<td>Introduction</td>
<td>164</td>
</tr>
<tr>
<td>10-2</td>
<td>Principles</td>
<td>166</td>
</tr>
<tr>
<td>10-3</td>
<td>Method</td>
<td>172</td>
</tr>
<tr>
<td>10-4</td>
<td>Literature Cited</td>
<td>179</td>
</tr>
</tbody>
</table>

11 Hydraulic Head

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-1</td>
<td>Introduction</td>
<td>180</td>
</tr>
<tr>
<td>11-2</td>
<td>Principles</td>
<td>181</td>
</tr>
<tr>
<td>11-3</td>
<td>Method of Installing Piezometers by Driving</td>
<td>185</td>
</tr>
<tr>
<td>11-4</td>
<td>Method of Installing Piezometers by Jetting</td>
<td>187</td>
</tr>
<tr>
<td>11-5</td>
<td>Method of Flushing and Testing Piezometers</td>
<td>189</td>
</tr>
<tr>
<td>11-6</td>
<td>Method of Measuring Water Levels in Piezometers</td>
<td>190</td>
</tr>
<tr>
<td>11-7</td>
<td>Method of Installing Tensiometers</td>
<td>192</td>
</tr>
<tr>
<td>11-8</td>
<td>Interpretation of Hydraulic-Head Readings</td>
<td>193</td>
</tr>
<tr>
<td>11-9</td>
<td>Literature Cited</td>
<td>196</td>
</tr>
</tbody>
</table>

12 Rate of Water Intake in the Field

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12-1</td>
<td>General Introduction</td>
<td>197</td>
</tr>
<tr>
<td>12-2</td>
<td>Method of Artificial Rainfall</td>
<td>198</td>
</tr>
<tr>
<td>12-3</td>
<td>Method of Flooding</td>
<td>202</td>
</tr>
<tr>
<td>12-4</td>
<td>Method of Watershed Hydrographs</td>
<td>207</td>
</tr>
<tr>
<td>12-5</td>
<td>Analysis and Presentation of Data</td>
<td>208</td>
</tr>
<tr>
<td>12-6</td>
<td>Literature Cited</td>
<td>208</td>
</tr>
</tbody>
</table>

13 Laboratory Measurement of Hydraulic Conductivity of Saturated Soil

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13-1</td>
<td>Introduction</td>
<td>210</td>
</tr>
<tr>
<td>13-2</td>
<td>Principles</td>
<td>210</td>
</tr>
<tr>
<td>13-3</td>
<td>Methods</td>
<td>213</td>
</tr>
<tr>
<td>13-4</td>
<td>Literature Cited</td>
<td>220</td>
</tr>
</tbody>
</table>

14 Field Measurement of Hydraulic Conductivity Below a Water Table

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14-1</td>
<td>Introduction</td>
<td>222</td>
</tr>
<tr>
<td>14-2</td>
<td>Auger-Hole Method</td>
<td>223</td>
</tr>
<tr>
<td>14-3</td>
<td>Piezometer Method</td>
<td>229</td>
</tr>
<tr>
<td>14-4</td>
<td>Literature Cited</td>
<td>233</td>
</tr>
</tbody>
</table>

15 Field Measurement of Hydraulic Conductivity Above a Water Table

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-1</td>
<td>Introduction</td>
<td>234</td>
</tr>
<tr>
<td>15-2</td>
<td>Double-tube Method</td>
<td>234</td>
</tr>
<tr>
<td>15-3</td>
<td>Shallow-Well Pump-In Method</td>
<td>242</td>
</tr>
<tr>
<td>15-4</td>
<td>Permeameter Method</td>
<td>248</td>
</tr>
<tr>
<td>15-5</td>
<td>Literature Cited</td>
<td>252</td>
</tr>
</tbody>
</table>
CONTENTS, PART 1

16 Laboratory Measurement of Hydraulic Conductivity of Unsaturated Soil
A. Kluite
16-1 Introduction .. 253
16-2 Principles .. 253
16-3 Method ... 255
16-4 Literature Cited ... 261

17 Water Diffusivity
A. Kluite
17-1 Introduction .. 262
17-2 Principles .. 262
17-3 Method ... 264
17-4 Literature Cited ... 272

18 Water Capacity
A. Kluite
18-1 Introduction .. 273
18-2 Method ... 274
18-3 Literature Cited ... 278

19 Water Availability
D. B. Peters
19-1 General Introduction 279
19-2 Field Capacity ... 279
19-3 Wilting Point ... 282
19-4 Available Water .. 285
19-5 Literature Cited ... 285

20 Evapotranspiration
J. S. Robins
20-1 General Introduction 286
20-2 Indirect Measurements 287
20-3 Estimation Methods 291
20-4 Literature Cited ... 297

21 Porosity
James A. Vomocil
21-1 Introduction .. 299
21-2 Total Porosity .. 300
21-3 Pore-Size Distribution 300
21-4 Air-Filled Pores .. 307
21-5 Literature Cited ... 314

22 Composition of Soil Atmosphere
C. H. M. van Bavel
22-1 Introduction .. 315
22-2 Method ... 316
22-3 Literature Cited ... 318
CONTENTS, PART 1

23 Gas Movement

D. D. Evans

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>23-1 Air Permeability</td>
<td>319</td>
</tr>
<tr>
<td>23-2 Apparent Diffusion Coefficient</td>
<td>325</td>
</tr>
<tr>
<td>23-3 Literature Cited</td>
<td>330</td>
</tr>
</tbody>
</table>

24 Temperature

Sterling A. Taylor and Ray D. Jackson

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>24-1 General Introduction</td>
<td>331</td>
</tr>
<tr>
<td>24-2 Kinds of Thermometers Used in Soils Work</td>
<td>331</td>
</tr>
<tr>
<td>24-3 Calibration of Thermometers</td>
<td>337</td>
</tr>
<tr>
<td>24-4 Field Measurements</td>
<td>340</td>
</tr>
<tr>
<td>24-5 Literature Cited</td>
<td>344</td>
</tr>
</tbody>
</table>

25 Heat Capacity and Specific Heat

Sterling A. Taylor and Ray D. Jackson

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>25-1 Introduction</td>
<td>345</td>
</tr>
<tr>
<td>25-2 Principles</td>
<td>345</td>
</tr>
<tr>
<td>25-3 Method</td>
<td>346</td>
</tr>
<tr>
<td>25-4 Literature Cited</td>
<td>348</td>
</tr>
</tbody>
</table>

26 Heat Transfer

Ray D. Jackson and Sterling A. Taylor

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>26-1 General Introduction</td>
<td>349</td>
</tr>
<tr>
<td>26-2 General Principles</td>
<td>351</td>
</tr>
<tr>
<td>26-3 Thermal Conductivity</td>
<td>351</td>
</tr>
<tr>
<td>26-4 Thermal Diffusivity</td>
<td>356</td>
</tr>
<tr>
<td>26-5 Literature Cited</td>
<td>360</td>
</tr>
</tbody>
</table>

27 Reflectivity

Torrence H. MacDonald

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>27-1 Introduction</td>
<td>361</td>
</tr>
<tr>
<td>27-2 Principles</td>
<td>362</td>
</tr>
<tr>
<td>27-3 Method</td>
<td>363</td>
</tr>
<tr>
<td>27-4 Literature Cited</td>
<td>365</td>
</tr>
</tbody>
</table>

28 Long-Wave Radiation

Torrence H. MacDonald

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>28-1 Introduction</td>
<td>366</td>
</tr>
<tr>
<td>28-2 Method</td>
<td>369</td>
</tr>
<tr>
<td>28-3 Literature Cited</td>
<td>370</td>
</tr>
</tbody>
</table>

29 Particle Density

G. R. Blake

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>29-1 Introduction</td>
<td>371</td>
</tr>
<tr>
<td>29-2 Principles</td>
<td>371</td>
</tr>
<tr>
<td>29-3 Method</td>
<td>371</td>
</tr>
<tr>
<td>29-4 Literature Cited</td>
<td>373</td>
</tr>
</tbody>
</table>
Contents, Part 1

30 Bulk Density

<table>
<thead>
<tr>
<th>Section</th>
<th>Author</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>30-1 General Introduction</td>
<td>G. R. Blake</td>
<td>374</td>
</tr>
<tr>
<td>30-2 Core Method</td>
<td></td>
<td>375</td>
</tr>
<tr>
<td>30-3 Excavation Method</td>
<td></td>
<td>377</td>
</tr>
<tr>
<td>30-4 Clod Method</td>
<td></td>
<td>381</td>
</tr>
<tr>
<td>30-5 Radiation Methods</td>
<td></td>
<td>383</td>
</tr>
<tr>
<td>30-6 Literature Cited</td>
<td></td>
<td>390</td>
</tr>
</tbody>
</table>

31 Consistency

<table>
<thead>
<tr>
<th>Section</th>
<th>Author</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>31-1 Introduction</td>
<td></td>
<td>391</td>
</tr>
<tr>
<td>31-2 Principles</td>
<td></td>
<td>392</td>
</tr>
<tr>
<td>31-3 Method</td>
<td></td>
<td>394</td>
</tr>
<tr>
<td>31-4 Literature Cited</td>
<td></td>
<td>399</td>
</tr>
</tbody>
</table>

32 Compactibility

<table>
<thead>
<tr>
<th>Section</th>
<th>Author</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>32-1 Introduction</td>
<td></td>
<td>400</td>
</tr>
<tr>
<td>32-2 Principles</td>
<td></td>
<td>402</td>
</tr>
<tr>
<td>32-3 Method</td>
<td></td>
<td>405</td>
</tr>
<tr>
<td>32-4 Literature Cited</td>
<td></td>
<td>412</td>
</tr>
</tbody>
</table>

33 Stress Distribution

<table>
<thead>
<tr>
<th>Section</th>
<th>Author</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>33-1 Introduction</td>
<td></td>
<td>413</td>
</tr>
<tr>
<td>33-2 Principles</td>
<td></td>
<td>415</td>
</tr>
<tr>
<td>33-3 Method</td>
<td></td>
<td>425</td>
</tr>
<tr>
<td>33-4 Literature Cited</td>
<td></td>
<td>429</td>
</tr>
</tbody>
</table>

34 Shear Strength

<table>
<thead>
<tr>
<th>Section</th>
<th>Author</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>34-1 General Introduction</td>
<td></td>
<td>431</td>
</tr>
<tr>
<td>34-2 Methods for Measuring Shear Strength</td>
<td></td>
<td>431</td>
</tr>
<tr>
<td>34-3 Factors Affecting Shear-Strength Test Results</td>
<td></td>
<td>433</td>
</tr>
<tr>
<td>34-4 Direct Shear</td>
<td></td>
<td>434</td>
</tr>
<tr>
<td>34-5 Triaxial Compression</td>
<td></td>
<td>438</td>
</tr>
<tr>
<td>34-6 Unconfined Compression</td>
<td></td>
<td>445</td>
</tr>
<tr>
<td>34-7 Literature Cited</td>
<td></td>
<td>447</td>
</tr>
</tbody>
</table>

35 Volume Change

<table>
<thead>
<tr>
<th>Section</th>
<th>Author</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>35-1 Introduction</td>
<td></td>
<td>448</td>
</tr>
<tr>
<td>35-2 Principles</td>
<td></td>
<td>448</td>
</tr>
<tr>
<td>35-3 Method for Consolidation</td>
<td></td>
<td>449</td>
</tr>
<tr>
<td>35-4 Method for Expansion</td>
<td></td>
<td>461</td>
</tr>
<tr>
<td>35-5 Method for Shrinkage</td>
<td></td>
<td>463</td>
</tr>
<tr>
<td>35-6 Literature Cited</td>
<td></td>
<td>465</td>
</tr>
</tbody>
</table>
CONTENTS, PART 1

36 Modulus of Rupture

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>36-1</td>
<td>Introduction</td>
<td>466</td>
</tr>
<tr>
<td>36-2</td>
<td>Principles</td>
<td>466</td>
</tr>
<tr>
<td>36-3</td>
<td>Method</td>
<td>467</td>
</tr>
<tr>
<td>36-4</td>
<td>Literature Cited</td>
<td>471</td>
</tr>
</tbody>
</table>

R. C. Reeve

37 Penetrometer Measurements

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>37-1</td>
<td>General Introduction</td>
<td>472</td>
</tr>
<tr>
<td>37-2</td>
<td>Pocket Penetrometer</td>
<td>473</td>
</tr>
<tr>
<td>37-3</td>
<td>Proctor Penetrometer</td>
<td>474</td>
</tr>
<tr>
<td>37-4</td>
<td>Cone Penetrometer</td>
<td>478</td>
</tr>
<tr>
<td>37-5</td>
<td>Standard Split-Spoon Penetrometer</td>
<td>481</td>
</tr>
<tr>
<td>37-6</td>
<td>Literature Cited</td>
<td>484</td>
</tr>
</tbody>
</table>

Donald T. Davidson

38 Bearing Capacity

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>38-1</td>
<td>General Introduction</td>
<td>485</td>
</tr>
<tr>
<td>38-2</td>
<td>California Bearing Ratio</td>
<td>487</td>
</tr>
<tr>
<td>38-3</td>
<td>Field Plate-Bearing Test</td>
<td>494</td>
</tr>
<tr>
<td>38-4</td>
<td>Literature Cited</td>
<td>498</td>
</tr>
</tbody>
</table>

W. A. Goodwin

39 Size Distribution of Aggregates

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>39-1</td>
<td>Introduction</td>
<td>499</td>
</tr>
<tr>
<td>39-2</td>
<td>Method for Water-Stable Aggregates</td>
<td>506</td>
</tr>
<tr>
<td>39-3</td>
<td>Literature Cited</td>
<td>509</td>
</tr>
</tbody>
</table>

W. D. Kemper and W. S. Chepil

40 Aggregate Stability

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>40-1</td>
<td>Introduction</td>
<td>511</td>
</tr>
<tr>
<td>40-2</td>
<td>Principles</td>
<td>512</td>
</tr>
<tr>
<td>40-3</td>
<td>Method</td>
<td>515</td>
</tr>
<tr>
<td>40-4</td>
<td>Literature Cited</td>
<td>519</td>
</tr>
</tbody>
</table>

W. D. Kemper

41 Air-to-Water Permeability Ratio

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>41-1</td>
<td>Introduction</td>
<td>520</td>
</tr>
<tr>
<td>41-2</td>
<td>Principles</td>
<td>520</td>
</tr>
<tr>
<td>41-3</td>
<td>Method for Permeability of Soil to Air</td>
<td>524</td>
</tr>
<tr>
<td>41-4</td>
<td>Method for Permeability of Soil to Water</td>
<td>528</td>
</tr>
<tr>
<td>41-5</td>
<td>Expression and Interpretation of Results</td>
<td>530</td>
</tr>
<tr>
<td>41-6</td>
<td>Literature Cited</td>
<td>531</td>
</tr>
</tbody>
</table>

R. C. Reeve
CONTENTS, PART 1

42 Specific Surface

M. M. Mortland and W. D. Kemper

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>42-1 Introduction</td>
<td>532</td>
</tr>
<tr>
<td>42-2 Principles</td>
<td>533</td>
</tr>
<tr>
<td>42-3 Method</td>
<td>540</td>
</tr>
<tr>
<td>42-4 Literature Cited</td>
<td>543</td>
</tr>
</tbody>
</table>

43 Particle Fractionation and Particle-Size Analysis

Paul R. Day

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>43-1 Introduction</td>
<td>545</td>
</tr>
<tr>
<td>43-2 Principles</td>
<td>547</td>
</tr>
<tr>
<td>43-3 Method for Separation of Clay, Silt, and Sand Fractions</td>
<td>550</td>
</tr>
<tr>
<td>43-4 Pipette Method of Particle-Size Analysis</td>
<td>552</td>
</tr>
<tr>
<td>43-5 Hydrometer Method of Particle-Size Analysis</td>
<td>562</td>
</tr>
<tr>
<td>43-6 Literature Cited</td>
<td>566</td>
</tr>
</tbody>
</table>

44 Pretreatment for Mineralogical Analysis

G. W. Kunze

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>44-1 General Introduction</td>
<td>568</td>
</tr>
<tr>
<td>44-2 Removal of Soluble Salts and Carbonates</td>
<td>568</td>
</tr>
<tr>
<td>44-3 Removal of Organic Matter</td>
<td>572</td>
</tr>
<tr>
<td>44-4 Removal of Free Iron Oxides</td>
<td>574</td>
</tr>
<tr>
<td>44-5 Particle-Size Separations</td>
<td>576</td>
</tr>
<tr>
<td>44-6 Literature Cited</td>
<td>577</td>
</tr>
</tbody>
</table>

45 Free Oxides, Hydroxides, and Amorphous Aluminosilicates

M. L. Jackson

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>45-1 General Introduction</td>
<td>578</td>
</tr>
<tr>
<td>45-2 Quartz</td>
<td>580</td>
</tr>
<tr>
<td>45-3 Amorphous Aluminosilicates, Silica, and Alumina</td>
<td>587</td>
</tr>
<tr>
<td>45-4 Allophane</td>
<td>592</td>
</tr>
<tr>
<td>45-5 Rutile and Anatase</td>
<td>598</td>
</tr>
<tr>
<td>45-6 Literature Cited</td>
<td>601</td>
</tr>
</tbody>
</table>

46 Petrographic Microscope Techniques

John G. Cady

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>46-1 General Introduction</td>
<td>604</td>
</tr>
<tr>
<td>46-2 Grains</td>
<td>605</td>
</tr>
<tr>
<td>46-3 Thin Sections</td>
<td>617</td>
</tr>
<tr>
<td>46-4 Applications</td>
<td>628</td>
</tr>
<tr>
<td>46-5 Literature Cited</td>
<td>630</td>
</tr>
</tbody>
</table>

47 Electron Microscope Techniques

J. A. Kittrick

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>47-1 Introduction</td>
<td>632</td>
</tr>
<tr>
<td>47-2 Principles and Instrumentation</td>
<td>633</td>
</tr>
<tr>
<td>47-3 Specimen Preparation</td>
<td>637</td>
</tr>
<tr>
<td>47-4 Enhancing Specimen Definition</td>
<td>647</td>
</tr>
<tr>
<td>47-5 Sources of Information</td>
<td>649</td>
</tr>
<tr>
<td>47-6 Literature Cited</td>
<td>651</td>
</tr>
</tbody>
</table>
CONTENTS, PART 1

48 Electron-Diffraction Techniques for Mineral Identification

J. A. Kittrick

48-1 Introduction .. 653
48-2 Principles .. 654
48-3 Transmission Method .. 659
48-4 Reflection Method ... 667
48-5 Sources of Information 669
48-6 Literature Cited .. 669

49 X-Ray Diffraction Techniques for Mineral Identification and Mineralogical Composition

L. D. Whittig

49-1 General Introduction .. 671
49-2 Principles of X-Ray Diffraction 672
49-3 Preparation of Samples 674
49-4 X-Ray Examination of Samples 687
49-5 Criteria for Differentiation of Layer-Silicate Species ... 689
49-6 Qualitative Interpretation of Diffraction Patterns 692
49-7 Quantitative Interpretation of Diffraction Patterns 694
49-8 Literature Cited .. 696

50 Thermal Analysis Techniques for Mineral Identification and Mineralogical Composition

Isaac Barshad

50-1 General Introduction .. 699
50-2 General Principles .. 700
50-3 Differential Thermal Analysis 701
50-4 Thermogravimetric Analysis 720
50-5 Quantitative Mineralogical Composition by Thermal Analysis ... 727
50-6 Quantitative Mineralogical Composition by Use of Thermal Analysis and Other Analytical Methods 728
50-7 Literature Cited .. 741

51 Infrared Spectrometry

J. L. Mortensen, D. M. Anderson, J. L. White

51-1 General Introduction .. 743
51-2 Principles .. 745
51-3 Sample Preparation ... 753
51-4 Functional-Group and Qualitative Analysis of Organic Compounds 758
51-5 Difference Spectra of Adsorption Mixtures 762
51-6 Qualitative Analysis and Studies of Isomorphous Substitution in Clay Minerals 763
51-7 Determination of Di- and Trioctahedral Compositions, and Hydration Studies 765
51-8 Quantitative Analysis ... 767
51-9 Literature Cited .. 768

SUBJECT INDEX .. xliii