NITROGEN IN
AGRICULTURAL SOILS
The American Society of Agronomy and Academic Press published the first six books in this series. The General Editor of Monographs 1 to 6 was A. G. Norman. They are available through Academic Press, Inc., 111 Fifth Avenue, New York, NY 10003.

1. C. EDMUND MARSHALL: The Colloid Chemical of the Silicate Minerals, 1949
2. BYRON T. SHAW, Editor: Soil Physical Conditions and Plant Growth, 1952
3. K. D. JACOB: Fertilizer Technology and Resources in the United States, 1953
5. GEORGE F. SPRAGUE, Editor: Corn and Corn Improvement, 1955
6. J. LEVITT: The Hardiness of Plants, 1956

The Monographs published since 1957 are available from the American Society of Agronomy, 677 S. Segoe Road, Madison, WI 53711.

7. JAMES N. LUTHIN, Editor: Drainage of Agricultural Lands, 1957 General Editor, D. E. Gregg
8. FRANKLIN A. COFFMAN, Editor: Oats and Oat Improvement Managing Editor, H. L. Hamilton
10. W. V. BARTHOLOMEW and F. E. CLARK, Editors: Soil Nitrogen, 1965 Managing Editor, H. L. Hamilton (Out of print; replaced by no. 22)
15. CLARENCE H. HANSON, Editor: Alfalfa Science and Technology, 1972 Managing Editor, H. L. Hamilton
17. JAN VAN SCHILFGAARDE, Editor: Drainage for Agriculture, 1974 Managing Editor, R. C. Dinauer
18. GEORGE F. SPRAGUE, Editor: Corn and Corn Improvement, 1977 Managing Editor, D. A. Fuccillo
19. JACK F. CARTER, Editor: Sunflower Science and Technology, 1978 Managing Editor, D. A. Fuccillo
20. ROBERT C. BUCKNER and L. P. BUSH, Editors: Tall Fescue, 1979 Managing Editor, D. A. Fuccillo
22. F. J. STEVENSON, Editor: Nitrogen in Agricultural Soils, 1982 Managing Editor, R. C. Dinauer
25. N. L. TAYLOR, Editor: Clover Science and Technology, 1985 Managing Editor, D. A. Fuccillo
NITROGEN IN AGRICULTURAL SOILS

FRANK J. STEVENSON, editor

Editorial Committee
F. J. Stevenson
J. M. Bremner
R. D. Hauck
D. R. Keeney

Managing Editor: RICHARD C. DINAUER
Assistant Editor: KRISTINE E. GATES
Editor-in-Chief ASA Publications: MATTHIAS STELLY

Number 22 in the series

AGRONOMY

American Society of Agronomy, Inc.
Crop Science Society of America, Inc.
Soil Science Society of America, Inc.
Publisher
Madison, Wisconsin USA
1982
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>xv</td>
</tr>
<tr>
<td>GENERAL FOREWORD AND FOREWORD</td>
<td>xvi</td>
</tr>
<tr>
<td>PREFACE</td>
<td>xvii</td>
</tr>
<tr>
<td>CONTRIBUTORS</td>
<td>xviii</td>
</tr>
<tr>
<td>CONVERSION FACTORS FOR U.S. AND METRIC UNITS</td>
<td>xx</td>
</tr>
</tbody>
</table>

1 Origin and Distribution of Nitrogen in Soil

F. J. STEVENSON

I. Introduction ... 1
II. The N Cycle ... 3
 A. Geochemistry of N .. 4
 B. Evolutionary Aspects ... 6
III. Mechanisms by Which N is Added to Soil in Nature 11
 A. Nitrogen in Atmospheric Precipitation 11
 B. Biological N₂ Fixation .. 12
IV. Nitrogen Losses from Soil .. 21
 A. Volatilization of NH₃ .. 21
 B. Bacterial Denitrification .. 22
 C. Leaching ... 23
 D. Chemical Reactions of NO₃− 24
V. Factors Affecting the N Content of Soils 24
 A. Nitrogen Accumulations during Soil Development (the Time Factor) 25
 B. Effect of Climate .. 27
 C. Vegetation ... 30
 D. Parent Material ... 31
 E. Topography .. 31
 F. Effect of Cropping .. 32
VI. Summary .. 38

LITERATURE CITED .. 39

2 Inorganic Forms of Nitrogen in Soil

J. L. YOUNG AND R. W. ALDAG

I. Introduction ... 43
II. Mineral-Fixed NH₄−-N .. 44
 A. General Terminology ... 44
 B. Origin .. 44
 C. Methods of Estimation ... 46
 D. Amounts of Distribution in Soil Profiles 48
 E. Effect on C/N Ratios .. 54
 F. Stability, Transformation, Fluctuation, and Movement 55
III. Exchangeable and Water-soluble Forms 56
 A. Methods of Determination ... 57
 B. Amounts and Distribution .. 58
IV. Soil Nitrogen Gases .. 60
 A. Methods of Determination ... 61
 B. Amounts and Distribution .. 61

LITERATURE CITED .. 62
3 Organic Forms of Soil Nitrogen

F. J. STEVENSON

I. Introduction .. 67
II. Fractionation of Soil N 67
 A. Distribution of Organic Forms of N in Mineral Soils .. 70
 B. Distribution of the Forms of N in Histosols and Aquatic Sediments 77
 C. Humic and Fulvic Acids 79
 D. Distribution and Stabilization of Newly Immobilized N .. 83
 E. Natural Variations in N Isotope Abundance ... 87
III. Amino Acids .. 88
 A. Extraction and Quantitative Determination ... 89
 B. Identification of Amino Acids .. 90
 C. Distribution Patterns in Soil .. 91
 D. Factors Affecting the Distribution of Amino Acids .. 94
 E. Amino Acids in Humic and Fulvic Acids ... 96
 F. Stereochemistry of Amino Acids .. 97
 G. Free Amino Acids .. 97
 H. State of Amino Acids in Soil .. 99
IV. Amino Sugars ... 101
 A. Extraction and Quantitative Determination ... 102
 B. Isolation of Amino Sugars .. 103
V. Other N Compounds ... 105
 A. Nucleic Acids and Derivatives ... 105
 B. Chlorophyll and Chlorophyll Degradation Products .. 107
 C. Phospholipids ... 109
 D. Amines, Vitamins, and Other Compounds ... 109
 E. Pesticide and Pesticide Degradation Products ... 111
VI. Stability of Soil Organic N 112
VII. Summary ... 114

LITERATURE CITED ... 114

4 Retention and Fixation of Ammonium and Ammonia in Soils

HANS NOMMIK AND KAAREL VAHTERAS

I. Introduction ... 123
II. Exchangeable Binding of NH₄⁺ in Soils and Clay Minerals .. 123
 A. Cation Adsorption and Exchange .. 124
 B. Cation Exchange Reactions .. 126
III. Nonexchangeable Binding (Fixation) of NH₄⁺ in Soils and Clay Minerals 127
 A. Mechanism of NH₄⁺ Fixation ... 127
 B. Methods Used for Studying NH₄⁺ Fixation ... 130
 C. Factors Affecting Rate and Magnitude of NH₄⁺ Fixation 132
 D. Release of Fixed NH₄⁺ from Soils and Minerals by Different Extraction and Distillation Procedures .. 139
 E. Availability of Fixed NH₄⁺ to Soil Microorganisms .. 143
 F. Availability of Fixed NH₄⁺ to Higher Plants ... 148
IV. Retention of NH₃ and Fixation of NH₃ in Soil Organic Matter 152
 A. General Remarks .. 152
 B. Physical Sorption of NH₃ .. 154
 C. Chemisorption of NH₃ .. 156
 D. Fixation of NH₃ in Soil Organic Matter ... 156
LITERATURE CITED ... 166
CONTENTS

5 Biochemistry of Ammonification

J. N. LADD AND R. B. JACKSON

I. Introduction .. 173
II. Proteins, Peptides, Amides, Amidines, and Amino Acids 174
 A. Proteinases and Peptidases ... 175
 B. Proteinases and Peptidases in Soil 178
 C. Amidohydrolases and Amidinohydrolases 186
 D. Amino Acid Dehydrogenases and Oxidases 187
III. Aminopolysaccharides and Amino Sugars 189
 A. Origin and Hydrolysis ... 190
 B. Stability of Aminopolysaccharides in Soil 191
 C. Hydrolysis of Aminopolysaccharides in Soil 192
 D. Ammonia Production From Amino Sugars 193
IV. Nucleic Acids, Nucleotides, Nucleosides, Purines, and Pyrimidines .. 194
 A. Nucleic Acids .. 195
 B. Nucleotides and Nucleosides ... 197
 C. Nucleases, Nucleotidases, and Nucleosidases in Soil 198
 D. Deamination of Nucleotides and Nucleosides 198
 E. Catabolism of Purines .. 199
 F. Degradation of Pyrimidines ... 204
 G. Degradation of Purines and Pyrimidines in Soil 207
V. Urea .. 208
 A. Ureases .. 209
 B. Soil Ureases .. 210
VI. Other Compounds .. 221
LITERATURE CITED .. 222

6 Mineralization and Immobilization of Soil Nitrogen

S. L. JANSSON AND J. PERSSON

I. Background ... 229
 A. The Processes of Mineralization and Immobilization 229
 B. Relations to the Universal N Cycle 230
 C. Partition of the Universal N Cycle Into Three Subcycles 231
 D. Competition Among the N Subcycles 232
 E. Mineralization-Immobilization Turnover (MIT) 233
II. Features and Functions of MIT ... 233
 A. Inadequacies of Net Effect Determinations 233
 B. Possibilities of Measuring Gross Effects: Usefulness of Tracer Techniques ... 233
 C. Confusion Caused by MIT .. 234
 D. Priming Effect and Related Phenomena 235
 E. Fertilizer N and MIT ... 236
 F. Evaluation of N Fertilizers .. 238
 G. MIT and Nitrification .. 239
 H. Consequences of N, Fixation and Denitrification on MIT 239
 I. MIT Interactions with Plants ... 240
 J. Effects of Physical and Chemical Soil Factors 240
 K. Energy-Nutrient Relationships 240
 L. The C/N Ratio: C and N Interdependence 241
 M. The Phase Concept of Soil Organic Matter 242
 N. Humus Formation and Decay: A Dynamic Phenomenon 242
7 Nitrification in Soil

EDWIN L. SCHMIDT

I. Introduction .. 253
II. The Process of Nitrification in Soils 254
 A. Factors Regulating Nitrification in Soils 254
 B. Substrates and Products 257
 C. Interactions with Other N Cycle Events 258
 D. Approaches to Soil Nitrification 259
III. Microbiological Basis of Nitrification 260
 A. Nitrification by Heterotrophs 260
 B. Methane Oxidizing Bacteria 262
 C. Autotrophic Nitrifiers 263
IV. Ammonium Oxidizing Bacteria in Soil 264
 A. Biochemistry of NH₄⁺ Oxidation 264
 B. Carbon Metabolism 267
 C. Soil Genera ... 268
V. Nitrite Oxidizing Bacteria of Soil 269
 A. Biochemistry of NO₂⁻ Oxidation 269
 B. Carbon Metabolism 269
VI. Study of Nitrifying Populations of Soils 270
 A. Isolation ... 271
 B. Most Probable Number (MPN) Enumeration 271
 C. Fluorescent Antibody (FA) Techniques 272
 D. Short Term Nitrification Activity 272
VII. Regulation of Nitrifying Populations in Soils 273
 A. Naturally Occurring Inhibitors 274
 B. Inhibition by Pesticides Added to Soil 275
 C. Specific Inhibitors of Nitrification 276
VIII. Growth of Nitrifying Bacteria in Soil 278
 A. Growth Rates ... 278
 B. Yields ... 280
 C. Activity .. 281
IX. Concluding Comments 282
ACKNOWLEDGMENT ... 283
LITERATURE CITED .. 283

8 Biological Denitrification

M. K. FIRESTONE

I. Introduction .. 289
II. Biochemical and Microbiological Basis 290
 A. Definition and Pathway 290
CONTENTS

B. Organisms Involved .. 292
C. Cellular Control .. 294
D. Characteristics of Specific Reductases 299
E. Energy Conservation During Denitrification 305
III. Denitrification in Soil ... 306
 A. Carbon Supply ... 306
 B. Oxygen Control .. 310
 C. Nitrate Supply ... 314
 D. Effect of Temperature ... 315
 E. Effect of pH ... 316
IV. Concluding Comments ... 318

LITERATURE CITED ... 318

9 Gaseous Losses of Nitrogen Other Than Through Denitrification

DARRELL W. NELSON

I. Introduction ... 327
II. Ammonia Loss From Soils ... 327
 A. Ammonia Volatilization Following Ammonium Fertilization of Soils ... 328
 B. Ammonia Losses from Soils Following Anhydrous Ammonia Application .. 339
III. Gaseous Nitrogen Loss From Soils Through Nitrite Reactions ... 341
 A. Nitrite-Nitrous Acid Equilibria in Soils 343
 B. Factors Affecting Nitrite Instability in Soils 343
 C. Gaseous Products of Nitrite Reactions in Soils 344
 D. Mechanisms for Gaseous Loss of Nitrite N from Soils 346
 E. Importance of Nitrite Reactions in Nitrogen Losses from Soils .. 354
IV. Gaseous Nitrogen Loss from Soils Through Reactions of Nitrate and Hydroxylamine .. 356
V. Management Techniques to Minimize Gaseous Nitrogen Losses ... 357
LITERATURE CITED ... 358

10 Biological Nitrogen Fixation

U. D. HAVELKA, M. G. BOYLE, AND R. W. F. HARDY

I. General Introduction .. 365
 A. Extent of N₂ Fixation ... 366
 B. Nitrogenase Enzyme ... 366
 C. Nitrogenase Reaction ... 366
 D. Nitrogenase Regulation .. 367
II. Microbiology of N₂ Fixation ... 367
 A. Introduction ... 367
 B. Free-Living Diazotrophs .. 370
 C. Symbiotic N₂ Fixation ... 375
III. Physiology and Agronomy of N₂ Fixation—Legume/Rhizobium Symbiosis ... 383
 A. Introduction ... 383
 B. Nodulation Process ... 384
 C. Energy Relationships in N₂ Fixation 387
 D. Methodology of N₂ Fixation Measurement 398
 E. Rhizobium Classification ... 406
CONTENTS

F. Legume/Rhizobium Interactions .. 408
G. Seed Inoculant Technology ... 409
H. Inoculant Application ... 411
IV. Future Applications ... 413
LITERATURE CITED ... 413

11 Nitrogen Transport Processes in Soil
D. R. NIELSEN, J. W. BIGGAR, AND P. J. WIERENGA

I. Introduction ... 423
II. Deterministic Analyses ... 424
 A. Soil Water Movement ... 425
 B. Soil Solute Movement .. 426
III. Stochastic Analyses .. 433
LITERATURE CITED ... 445

12 Nitrogen Transformations in Submerged Soils
W. H. PATRICK, JR.

I. Introduction ... 449
II. Properties of Submerged Soils that Affect Nitrogen Behavior 449
III. Nitrogen Transformations in Submerged Soils 452
 A. Mineralization and Immobilization 452
 B. Nitrification-Denitrification .. 454
 C. Nitrogen Fixation .. 457
 D. Ammonium Volatilization ... 460
IV. Management of Submerged Soil to Minimize Nitrogen Loss 461
LITERATURE CITED ... 462

13 Advances in Methodology for Research on Nitrogen Transformations in Soils
J. M. BREMNER AND R. D. HAUCK

I. Introduction ... 467
II. Determination of Different Forms of Nitrogen 468
 A. Total Nitrogen .. 468
 B. Inorganic Forms of Nitrogen .. 471
 C. Organic Forms of Nitrogen .. 473
 D. Gaseous Forms of Nitrogen .. 474
III. Tracer Techniques ... 479
 A. Stable N Techniques ... 479
 B. Nitrogen-13 Techniques .. 483
 C. Use of Variations in Natural Nitrogen-15 Abundance 484
IV. Methods for Assay of the Activity of Enzymes Causing Nitrogen Transformations in Soils ... 486
 A. Nitrogenase Activity .. 487
 B. Urease Activity ... 487
 C. Other Enzymes .. 488
V. Methods for Research on Biological Nitrogen Fixation 488
VI. Methods for Research on Denitrification 491
LITERATURE CITED ... 493
14 Soil Nitrogen Budgets

J. O. LEGG AND J. J. MEISINGER

I. Introduction .. 503

II. The N Cycle in Relation to N Budgets 505
 A. Nitrogen Cycle Diagrams 505
 B. Soil N Equilibrium Concept 505

III. Nitrogen Sources in Soil-Plant Systems 507
 A. Indigenous Soil Organic N 507
 B. Additions Through Crop and Animal Wastes 507
 C. Additions by Precipitation and Irrigation Water 508
 D. Adsorption of Atmospheric Gases 509
 E. Biological N₂ Fixation 510
 F. Commercial Fertilizers 512
 G. Miscellaneous Items 512

IV. Nitrogen Losses from Soil-Plant Systems 512
 A. Removal by Crops and Livestock 513
 B. Erosion and Runoff 513
 C. Leaching Losses ... 516
 D. Denitrification and Other Gaseous Losses 518
 E. Ammonium Fixation 520

V. Recent Studies of N Budgets in Soil-Plant Systems 521
 A. Use of Labeled N in N Budgets 521
 B. N Balance Methodology 522
 C. Problems in N Balance Studies 523
 D. N Balance Studies .. 525
 E. Summary .. 546

VI. Applications of N Balances to Soil and Crop Problems 547
 A. General Aspects .. 547
 B. Nitrogen Budgets Applied to Environmental Problems 547
 C. Summary .. 555

VII. Summary and Conclusions 555

LITERATURE CITED ... 557

15 Crop Nitrogen Requirements, Utilization, and Fertilization

R. A. OLSON AND L. T. KURTZ

I. Introduction .. 567

II. Plant Use of N ... 568
 A. Functions of N in Plant Growth 568
 B. Uptake, Translocation, and Storage of N 570
 C. Biochemical Pathways of N in the Plant 575
 D. Genetic Effects on Biochemical Pathways 578

III. Nitrogen in Crop Production 579
 A. Nitrogen Levels in Crops Associated with Deficiency,
 Sufficiency, and Excess 579
 B. Amounts of N in Crops and Distribution within the Crop .. 581
 C. Influence of Fertilizer N on Crop Quality 585
 D. Impact of Applied Fertilizer N on Crop Utilization of
 Other Nutrients ... 590
 E. Efficient Use of N Fertilizer 592

IV. Influence of Climate and Cropping Systems on N Use 596
 A. Climate and N Fertilization 596
 B. Nitrogen Carriers and Cropping Systems 598
16 Nitrogen Management for Maximum Efficiency and Minimum Pollution

DENNIS R. KEENEY

I. Introduction .. 605
II. N Requirements for Food and Fiber 605
III. Adverse Health and Environmental Impacts of N 606
 A. Nitrogen and Human Health 606
 B. Animal Health ... 608
 C. Environmental Impacts 608
 D. Perspectives .. 610
IV. Trends in Anthropogenic N Fixation 611
 A. Worldwide ... 611
 B. United States ... 612
V. Sources of N Pollution 613
 A. Point Sources ... 614
 B. Nonpoint Sources 614
VI. Some Examples of Agricultural N Pollution 615
 A. U.S. Corn Belt ... 615
 B. Irrigated Agriculture 617
 C. Livestock Operations 621
 D. Grasslands ... 623
 E. Tropical Agriculture 624
VII. Factors Affecting Crop Yields and Use of N 626
VIII. Control of N Pollution From Croplands 627
 A. Agricultural Best Management Practices 628
 B. Improved Management of Nutrient Systems 631
 C. Limitations on Rates of Fertilizer Applications 638
 D. Fundamental Changes in Agriculture 638
IX. Summary .. 641
LITERATURE CITED .. 641

17 Assessment of Soil Nitrogen Availability

GEORGE STANFORD

I. Introduction .. 651
II. Estimating Residual Mineral Nitrogen in Soils 653
III. Incubation Methods for Measuring Mineralization of Soil Organic Nitrogen 658
 A. Short-term Incubation Methods 659
 B. Potentially Mineralizable Soil Nitrogen 662
IV. Chemical Indexes of Soil Organic Nitrogen Availability 664
 A. Intensive Extraction Methods 665
 B. Extraction Methods of Intermediate Intensity 666
 C. Relatively Mild Extraction Methods 669
V. Interpreting Chemical and Biological Assays of Soil Nitrogen Availability 673
 A. Under Controlled Conditions 675
 B. Under Field Conditions 676
LITERATURE CITED .. 683
18 The Effects of Pesticides on Nitrogen Transformations in Soils

C. A. I. GORING AND D. A. LASKOWSKI

I. Introduction .. 689
II. Soil Variability .. 689
III. Behavior of Pesticides 691
IV. Effects of Pesticides on N Transformations 692
 A. Mineralization/Immobilization 693
 B. Nitrification 693
 C. Denitrification 694
 D. Symbiotic N₂ Fixation 694
 E. Nonsymbiotic N₂ Fixation 695
V. Agronomic Implications 695
VI. Environmental and Regulatory Implications 713
LITERATURE CITED .. 714

19 Modeling of the Soil Nitrogen Cycle

KENNETH K. TANJI

I. Introduction .. 721
II. Computers and Simulation Models 721
 A. Computers and Programming 722
 B. Development and Application of Systems Simulation Models ... 724
III. Representative Nitrogen Models 725
 A. Survey of Dynamic N Simulation Models 726
 B. Evaluation of Selected Simulation Models 731
IV. Technical and Philosophical Critique 767
 A. General Critique 767
 B. Specific Critique 768
LITERATURE CITED .. 770

20 Economic Implications of Controls on Nitrogen Fertilizer Use

EARL R. SWANSON

I. Introduction .. 773
II. Alternative Methods of Control 774
III. Economic Framework 775
IV. Per-Hectare Restrictions on N Fertilizer Use 778
 A. National Analyses 778
 B. Regional Analyses 779
 C. State Analyses 780
V. Restrictions on NO₃⁻-N Concentration in Leachate or Effluent 780
VI. Treatment of Water to Reduce NO₃⁻-N Content 781
VII. Restrictions on the N Balance at the Farm Level 781
VIII. An Excise Tax on N Fertilizer 782
IX. An Effluent Charge 783
X. A Market for Rights to Use N Fertilizer 784
XI. Information Programs 786
XII. Summary and Conclusions 787
ACKNOWLEDGMENT ... 788
LITERATURE CITED .. 788
Recycling of Nitrogen Through Land Application of Agricultural, Food Processing, and Municipal Wastes

J. H. Smith and J. R. Peterson

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Introduction</td>
<td>791</td>
</tr>
<tr>
<td>II. Agricultural Wastes</td>
<td>791</td>
</tr>
<tr>
<td>A. Crop Residues</td>
<td>791</td>
</tr>
<tr>
<td>B. Animal Manures</td>
<td>797</td>
</tr>
<tr>
<td>III. Food Processing Wastes</td>
<td>806</td>
</tr>
<tr>
<td>A. The Nature and Composition of Food Processing Wastes</td>
<td>806</td>
</tr>
<tr>
<td>B. Irrigating Agricultural Land</td>
<td>811</td>
</tr>
<tr>
<td>C. Nitrogen Loading and Utilization on Land</td>
<td>812</td>
</tr>
<tr>
<td>D. Nitrification and Denitrification</td>
<td>814</td>
</tr>
<tr>
<td>E. Pollution Potential</td>
<td>814</td>
</tr>
<tr>
<td>IV. Municipal Wastes</td>
<td>815</td>
</tr>
<tr>
<td>A. Sewage Effluent</td>
<td>815</td>
</tr>
<tr>
<td>B. Sewage Sludge</td>
<td>818</td>
</tr>
<tr>
<td>V. Summary</td>
<td>825</td>
</tr>
</tbody>
</table>

Literature Cited

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>826</td>
</tr>
</tbody>
</table>

Energetics of Nitrogen Transformations

R. F. Harris

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Introduction</td>
<td>833</td>
</tr>
<tr>
<td>II. Bioenergetic Principles of Environmental Nitrogen Transformations</td>
<td>835</td>
</tr>
<tr>
<td>A. Nonequilibrium Thermodynamics and Reaction Kinetics</td>
<td>835</td>
</tr>
<tr>
<td>B. Ecological Considerations</td>
<td>842</td>
</tr>
<tr>
<td>III. Calculations and Interpretation of Group Transfer Energetics</td>
<td>845</td>
</tr>
<tr>
<td>A. General Equations</td>
<td>845</td>
</tr>
<tr>
<td>B. Energetics of Proton Transfer</td>
<td>847</td>
</tr>
<tr>
<td>IV. Pathway Energetics of Nitrogen Transformations</td>
<td>869</td>
</tr>
<tr>
<td>A. Assimilatory Pathways</td>
<td>869</td>
</tr>
<tr>
<td>B. Dissimilatory Pathways</td>
<td>871</td>
</tr>
<tr>
<td>C. Hydrogen Cyanide Metabolism</td>
<td>875</td>
</tr>
<tr>
<td>V. Efficiency of Reductive Dinitrogen Fixation</td>
<td>875</td>
</tr>
<tr>
<td>VI. Appendix</td>
<td>879</td>
</tr>
<tr>
<td>A. Selected Values of Thermodynamic Properties for Nitrogen</td>
<td>879</td>
</tr>
</tbody>
</table>

Literature Cited

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>888</td>
</tr>
</tbody>
</table>

Nitrogen Transfers and Mass Balances

R. D. Hauck and K. K. Tanji

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Introduction</td>
<td>891</td>
</tr>
<tr>
<td>II. N Transformations and Transfers</td>
<td>892</td>
</tr>
<tr>
<td>A. General Considerations</td>
<td>892</td>
</tr>
<tr>
<td>B. N Income, Outgo, and Transfer</td>
<td>893</td>
</tr>
<tr>
<td>III. N Mass Balances and Models</td>
<td>902</td>
</tr>
<tr>
<td>A. N Mass Balance Models</td>
<td>902</td>
</tr>
<tr>
<td>B. Small-Scale Models and N Balances</td>
<td>903</td>
</tr>
<tr>
<td>C. Regional Models and N Balances</td>
<td>908</td>
</tr>
<tr>
<td>D. Global Models and N Balances</td>
<td>915</td>
</tr>
<tr>
<td>IV. Perspective</td>
<td>920</td>
</tr>
</tbody>
</table>

Literature Cited

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>922</td>
</tr>
</tbody>
</table>

Subject Index

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>926</td>
</tr>
</tbody>
</table>
It is highly appropriate that Nitrogen in Agricultural Soils is dedicated to the memory of Dr. George Stanford, whose research career over the past 4 decades centered chiefly on elucidating nitrogen behavior and transformations in soils as a basis for achieving more effective use of nitrogen fertilizers.

Born 7 March 1916 near Pierre, South Dakota, he received his B.S. degree from South Dakota University in 1938. His research career and studies for advanced degrees began in 1939 at Iowa State University. The M.S. degree was received in 1941 and the Ph.D. in 1947. This period included military service as an infantry officer in World War II.

His professional career was spent at Cornell University (1948–50); Iowa State University (1950–55); TVA (1955–60); Hawaiian Sugar Planters Association and Hawaii Agricultural Experiment Station (1960–65); and USDA, Beltsville, Maryland (1965–80). He retired as a research soil scientist from USDA due to ill health that culminated in his death on 28 January 1981.

Dr. Stanford's research accomplishments were numerous and had considerable influence on soil fertility practices at a time when major expansion in fertilizer use was just beginning. His major research accomplishments dealt with ammonium fixation in soils; a rapid greenhouse-laboratory method for evaluating the relative effectiveness of diverse nitrogen, phosphorus, and potassium sources; optimal use of nitrogen fertilizer on sugarcane; development of a nitrogen availability index (extractable ammonia) for rapidly estimating the nitrogen-supplying capacities of soils; denitrification and nitrogen losses from soils; and long-term field experiments using stable nitrogen isotopes.

Throughout his career, Dr. Stanford's fine qualities as a researcher and team leader were often demonstrated. His careful planning, attention to detail, and good judgment contributed greatly to the success of experiments. He directly involved himself in all phases of the work. His ability to assimilate research data and to reduce it to its most significant terms was a trait admired by all who knew him.

Dr. Stanford's research greatly expanded our knowledge of nitrogen in agronomic systems and has resulted in more than 75 publications. He devoted a large share of his life to nitrogen research, and his findings will continue to influence the trends in research on this important element for years to come. His frank and forthright manner left no doubt as to where he stood on critical or controversial issues. His approach to research was realistic and involved a critical examination of the problems, alternate procedures, possibilities for success, and what contribution the research results made to scientific knowledge and to practical solutions. All those who conduct research in the future may do well to follow his example.
GENERAL FOREWORD

Nitrogen in Agricultural Soils is an update of the 1965 edition of *Soil Nitrogen*, ASA Monograph 10, and replaces the depleted supply of *Soil Nitrogen*. The new book incorporates the significant advances made in this field during the past 17 years and is the 22nd monograph in the series *Agronomy* that was started in 1949. The first six volumes were published by Academic Press, Inc., New York. In 1957, the American Society of Agronomy took over publication of the monographs and continued to be the sole publisher through the 18th monograph published in 1977. The Crop Science Society of America and the Soil Science Society of America were invited to participate in the series and have been copublishers since 1977. The monographs represent an important and continuing effort of the associated societies, their officers, and the 11,700 members located in 100 countries to provide mankind worldwide with the most recent information available.

On behalf of the members of the associated societies and myself, I sincerely thank the Editorial Committee members chaired by Dr. F. J. Stevenson for their diligent work, the many authors for their writings, Managing Editor Richard C. Dinauer for his inexhaustible patience in the compilation of the contents of this book, and all others who have contributed directly or indirectly to the accomplishment of this worthy project.

December 1981

MATTHIAS STELLY

Executive Vice President, ASA-CSSA-SSSA and Editor-in-Chief, ASA Publications

FOREWORD

The nitrogen reactions in soils and the nitrogen nutrition of crops are insufficiently understood. Soil nitrogen derived from organic matter is essential for plant growth and the formation of proteins required by living matter. The principal source of protein for a major portion of the human population is cereal grain. Humans depend on foraging animals to capture plant proteins and provide meat and milk. These basic characteristics of soil nitrogen challenge our interest in the mechanisms and processes by which people obtain food and fiber products.

An increase in the protein content of cereal grains would enhance the nutritional status of the human population. In many soils and for many crops, farmers increase the nutrient supply of nitrogen by the addition of various forms of nitrogen to the soil or by biological dinitrogen fixation with legumes. Plants consume only about 50% of the added nitrogen forms, and there is a strong need to increase this utilization level. The nitrogen cycle in soils follows a complex series of reactions that require continuing study to utilize this nutrient more effectively and to assure an adequate supply for plants. In the overall process of removing barriers to crop productivity, nitrogen supply to plants plays a major role.

We express appreciation and gratitude to Dr. F. J. Stevenson, editor, and his editorial committee, Drs. J. M. Bremner, R. D. Hauck, and D. R. Keeney for their important functions leading to this publication. We acknowledge and thank the
authors for their cooperation and efforts and the help of society members who reviewed manuscripts. We are grateful to the Headquarters staff for editorial and production efforts, which makes it possible to place this fine volume in your hands.

November 1981

STERLING R. OLSEN KENNETH J. FREY BOBBY A. STEWART
president ASA president CSSA president SSSA

PREFACE

Nitrogen in Agricultural Soils provides an authoritative review of the principles governing the behavior of nitrogen in the soil-plant system. The volume supersedes ASA Monograph 10 *Soil Nitrogen*, published in 1965. Significant advances on all aspects of the subject have been made since that time, and the need had arisen for a compilation and critical analysis of current knowledge. Material contained in the 1965 monograph has been extensively revised and updated, and new chapters have been introduced in response to increasing concern about energy conservation and preservation of the environment. Authors were allowed considerable latitude in developing their topics, with the result that both panoramic and specific views have been presented for each major component of the soil nitrogen cycle.

The volume covers many facets of soil nitrogen, including forms and distribution, biological and nonbiological transformations, gains, losses, and recycling, plant availability and uptake, modeling and transport, pesticide interactions, experimental approaches, and economic implications of restrictions on fertilizer nitrogen use. The field of study is broad and has involved researchers working in many specialized areas. Because of the voluminous literature that has accumulated over the past two decades, an exhaustive coverage of the literature was not always possible, and selection of references has often been rather arbitrary. The editors and authors apologize for omission of important work.

The editorial committee expresses appreciation to the authors and the organizations they represent for cooperation and support. Acknowledgment is given to Richard C. Dinauer, Matthias Stelly, and other members of the Headquarters staff for advice and assistance in editing and preparing the manuscripts for publication. We pay special tribute to George Stanford, author of Chapter 17, whose untimely death occurred while the monograph was in progress. The assistance of J. J. Meisinger in proofreading and indexing Dr. Stanford’s chapter is gratefully acknowledged.

August 1981

The Editorial Committee

F. J. STEVENSON, *editor, University of Illinois, Urbana, Illinois*

J. M. BREMNER, *Iowa State University, Ames, Iowa*

R. D. HAUCK, *Tennessee Valley Authority, Muscle Shoals, Alabama*

D. R. KEENEY, *University of Wisconsin, Madison, Wisconsin*
CONTRIBUTORS

Rudolf W. Aldag
Dr. sc. agr., Dr. habil., Institut für Bodenkunde, Universität Göttingen, Göttingen, West Germany

James W. Biggar
Professor of Water Science, Department of Land, Air, and Water Resources, University of California, Davis, California

John M. Bremner
Professor, Department of Agronomy, Iowa State University, Ames, Iowa

Mark G. Boyle
Agronomist, Central Research and Development Department, E.I. DuPont DeNemours Company, Wilmington, Delaware

Mary K. Firestone
Assistant Professor of Soil Microbiology, Department of Plant and Soil Biology, University of California, Berkeley, California

Cleave A. I. Goring
Technical Director, Agricultural Products Department, The Dow Chemical Company, Midland, Michigan

Ralph W. F. Hardy
Director, Life Sciences, Central Research and Development Department, E.I. DuPont DeNemours Company, Wilmington, Delaware

Robin F. Harris
Professor of Soil Microbiology, Department of Soil Science and Bacteriology, University of Wisconsin, Madison, Wisconsin

Roland D. Hauck
Research Soil Scientist, National Fertilizer Development Center, Tennessee Valley Authority, Muscle Shoals, Alabama

U. D. Havelka
Research Staff, Central Research and Development Department, E.I. DuPont DeNemours Company, Wilmington, Delaware

Ron B. Jackson
Experimental Officer, Division of Soils, CSIRO, Glen Osmond, South Australia, Australia

Sven L. Jansson
Professor, Department of Soil Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden

Dennis R. Keeney
Professor and Chairman, Department of Soil Science, University of Wisconsin, Madison, Wisconsin

Lester T. Kurtz
Professor of Soil Fertility, Department of Agronomy, University of Illinois, Urbana, Illinois

Jeffrey N. Ladd
Senior Principal Research Scientist, Division of Soils, CSIRO, Glen Osmond, South Australia, Australia

Dennis A. Laskowski
Research Leader, Environmental Chemistry, Agricultural Products Department, The Dow Chemical Company, Midland, Michigan

J. O. Legg
Soil Scientist (retired), Soil Nitrogen and Environmental Chemistry Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, Maryland. Currently Adjunct Professor, Agronomy Department, University of Arkansas, Fayetteville, Arkansas
CONTRIBUTORS

J. J. Meisinger
Soil Scientist, Soil Nitrogen and Environmental Chemistry Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, Maryland

Donald R. Nielsen
Professor of Soil and Water Science, Department of Land, Air, and Water Resources, University of California, Davis, California

Darrell W. Nelson
Professor of Agronomy, Department of Agronomy, Purdue University, West Lafayette, Indiana

Hans Nommik
Professor of Soil Chemistry, Department of Forest Soils, Swedish University of Agricultural Sciences, Uppsala, Sweden

Robert A. Olson
Professor of Agronomy, Department of Agronomy, University of Nebraska, Lincoln, Nebraska

J. Persson
Department of Soil Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden

William H. Patrick, Jr.
Boyd Professor, Laboratory for Wetland Soils and Sediments, Louisiana State University, Baton Rouge, Louisiana

James R. Peterson
Soil Scientist III, Research and Development Department, The Metropolitan Sanitary District of Greater Chicago, Cicero, Illinois

Edwin L. Schmidt
Professor, Department of Soil Science, University of Minnesota, St. Paul, Minnesota

Jay H. Smith
Soil Scientist, Snake River Conservation Research Center, Agricultural Research Service, U.S. Department of Agriculture, Kimberly, Idaho

George Stanford

Frank J. Stevenson
Professor of Soil Chemistry, Department of Agronomy, University of Illinois, Urbana, Illinois

Earl R. Swanson
Professor of Agricultural Economics, Department of Agricultural Economics, University of Illinois, Urbana, Illinois

Kenneth K. Tanji
Professor of Water Science, Department of Land, Air, and Water Resources, University of California, Davis, California

Kaarel Vahtras
Agronomie Licentiat, Department of Soil Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden

Peter J. Wierenga
Professor of Soil Science, Department of Agronomy, New Mexico State University, Las Cruces, New Mexico

J. L. Young
Research Chemist and Professor of Soil Science, Agricultural Research Service, U.S. Department of Agriculture, and Soil Science Department, Oregon State University, Corvallis, Oregon
CONVERSION FACTORS FOR U. S. AND METRIC UNITS

<table>
<thead>
<tr>
<th>To convert column 1 into column 2, multiply by</th>
<th>Column 1</th>
<th>Column 2</th>
<th>To convert column 2 into column 1, multiply by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.621</td>
<td>kilometer, km</td>
<td>mile, mi</td>
<td>1.609</td>
</tr>
<tr>
<td>1.094</td>
<td>meter, m</td>
<td>yard, yd</td>
<td>0.914</td>
</tr>
<tr>
<td>0.394</td>
<td>centimeter, cm</td>
<td>inch, in</td>
<td>2.54</td>
</tr>
<tr>
<td>Area</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.386</td>
<td>kilometer², km²</td>
<td>mile², mi²</td>
<td>2.590</td>
</tr>
<tr>
<td>247.1</td>
<td>kilometer², km²</td>
<td>acre, acre</td>
<td>0.00405</td>
</tr>
<tr>
<td>2.471</td>
<td>hectare, ha</td>
<td>acre, acre</td>
<td>0.405</td>
</tr>
<tr>
<td>Volume</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.00973</td>
<td>meter³, m³</td>
<td>acre-inch</td>
<td>102.8</td>
</tr>
<tr>
<td>3.532</td>
<td>hectoliter, hl</td>
<td>cubic foot, ft³</td>
<td>0.2832</td>
</tr>
<tr>
<td>2.838</td>
<td>hectoliter, hl</td>
<td>bushel, bu</td>
<td>0.352</td>
</tr>
<tr>
<td>0.0284</td>
<td>liter</td>
<td>bushel, bu</td>
<td>35.24</td>
</tr>
<tr>
<td>1.057</td>
<td>liter</td>
<td>quart (liquid), qt</td>
<td>0.946</td>
</tr>
<tr>
<td>Mass</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.102</td>
<td>ton (metric)</td>
<td>ton (U.S.)</td>
<td>0.9072</td>
</tr>
<tr>
<td>2.205</td>
<td>quintal, q</td>
<td>hundredweight, cwt (short)</td>
<td>0.454</td>
</tr>
<tr>
<td>2.205</td>
<td>kilogram, kg</td>
<td>pound, lb</td>
<td>0.454</td>
</tr>
<tr>
<td>0.035</td>
<td>gram, g</td>
<td>ounce (avoirdupois), oz</td>
<td>28.35</td>
</tr>
<tr>
<td>Pressure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.50</td>
<td>bar</td>
<td>lb/inch², psi</td>
<td>0.06895</td>
</tr>
<tr>
<td>0.9869</td>
<td>bar</td>
<td>atmosphere, atm</td>
<td>1.013</td>
</tr>
<tr>
<td>0.9678</td>
<td>kg/(weight)/cm²</td>
<td>atmosphere, atm</td>
<td>1.033</td>
</tr>
<tr>
<td>14.22</td>
<td>kg/(weight)/cm²</td>
<td>lb/inch², psi</td>
<td>0.07031</td>
</tr>
<tr>
<td>14.70</td>
<td>atmosphere, atm</td>
<td>lb/inch², psi</td>
<td>0.06805</td>
</tr>
<tr>
<td>Yield or Rate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.446</td>
<td>ton (metric)/hectare</td>
<td>ton (U.S.)/acre</td>
<td>2.24</td>
</tr>
<tr>
<td>0.892</td>
<td>kg/ha</td>
<td>lb/acre</td>
<td>1.12</td>
</tr>
<tr>
<td>0.892</td>
<td>quintal/hectare</td>
<td>hundredweight/acre</td>
<td>1.12</td>
</tr>
<tr>
<td>Temperature</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| \[
\left(\frac{9}{5} \text{°C} \right) + 32 \] | Celsius | Fahrenheit | 5/9 (°F - 32) |
| -17.8C | 0°F | 32°F | |
| 0°C | | | |
| 100°C | | | |
| **Water Measurement** | | | |
| 8.108 | hectare-meters, ha-m | acre-feet | 0.1233 |
| 97.29 | hectare-meters, ha-m | acre-inches | 0.01028 |
| 0.08108 | hectare-centimeters, ha-cm | acre-feet | 12.33 |
| 0.973 | hectare-centimeters, ha-cm | acre-inches | 1.028 |
| 0.00973 | meters³, m³ | acre-inches | 102.8 |
| 0.981 | hectare-centimeters/hour, ha-cm/hour | feet³/sec | 1.0194 |
| 440.3 | hectare-centimeters/hour, ha-cm/hour | U.S. gallons/min | 0.00227 |
| 0.00981 | meters²/hour, m²/hour | feet³/sec | 101.94 |
| 4.403 | meters²/hour, m²/hour | U.S. gallons/min | 0.227 |

Plant Nutrition Conversion—P and K

- **Phosphorus (P)**
 \[P \text{ (phosphorus)} \times 2.29 = P_2O_5 \]
- **Potassium (K)**
 \[K \text{ (potassium)} \times 1.20 = K_2O \]