AGRONOMY

A Series of Monographs

The American Society of Agronomy and Academic Press published the first six books in this series. The General Editor of Monographs 1 to 6 was A. G. Norman. They are available through Academic Press, Inc., 115 Fifth Avenue, New York, NY 10003.

1. C. EDMUND MARSHALL: The Colloid Chemical of the Silicate Minerals, 1949
2. BYRON T. SHAW, Editor: Soil Physical Conditions and Plant Growth, 1952
3. K. D. JACOB: Fertilizer Technology and Resources in the United States, 1953
5. GEORGE F. SPRAGUE, Editor: Corn and Corn Improvement, 1955
6. J. LEVITT: The Hardiness of Plants, 1956

The Monographs published since 1957 are available from the American Society of Agronomy, 677 S. Segoe Road, Madison, WI 53711.

7. JAMES N. LUTHIN, Editor: Drainage of Agricultural Lands, 1957 General Editor, D. E. Gregg
8. FRANKLIN A. COFFMAN, Editor: Oats and Oat Improvement Managing Editor, H. L. Hamilton
10. W. V. BARTHOLOMEW and F. E. CLARK, Editors: Soil Nitrogen, 1965 (Out of print; replaced by no. 22)
15. CLARENCE H. HANSON, Editor: Alfalfa Science and Technology, 1972 Managing Editor, H. L. Hamilton
17. JAN VAN SCHILFGAARDE, Editor: Drainage for Agriculture, 1974 Managing Editor, R. C. Dinauer
18. GEORGE F. SPRAGUE, Editor: Corn and Corn Improvement, 1977 Managing Editor, D. A. Fuccillo
19. JACK F. CARTER, Editor: Sunflower Science and Technology, 1978 Managing Editor, D. A. Fuccillo
20. ROBERT C. BUCKNER and L. P. BUSH, Editors: Tall Fescue, 1979 Managing Editor, D. A. Fuccillo
22. F. J. STEVENSON, Editor: Nitrogen in Agricultural Soils, 1982 Managing Editor, R. C. Dinauer
CONTENTS

FOREWORD .. ix
PREFACE .. x
CONTRIBUTORS .. xi
CONVERSION FACTORS FOR SI UNITS .. 1

1 The Chemistry of Soil Acidity .. 3

GRANT W. THOMAS AND WILLIAM L. HARGROVE

I. Materials and Reactions Responsible for Soil Acidity 4
 A. Inorganic Components .. 4
 B. Organic Matter .. 9
 C. Hydrolysis and Its Role in Soil Acidity 12

II. Buffer Curves and Apparent Acid Strengths 15
 A. Minerals .. 15
 B. Organic Matter ... 19

III. Cation Exchange Properties of Acid Soils 22
 A. Components of CEC ... 22
 B. CEC and pH of Soils ... 30
 C. Soil pH and Percent Base Saturation 32
 D. Anion Adsorption by Soils 33

IV. Exchangeable Ions in Acid Soils ... 34
 A. Exchangeable and Titratable Acidity 34
 B. Affinities of Cations for Acid Soils 38

V. Soil pH .. 40
 A. General Aspects of Soil pH 40
 B. Suspension Effect .. 41
 C. Lime Potential: pH − 1/2pCa 43

VI. Neutralization of Soil Acidity ... 44
 A. Mechanisms and Products of Neutralization 44
 B. Rate of Reaction of Liming Materials with Soil 45

VII. Measurement of Soil Acidity and Lime Requirement 47

References ... 49

2 Physiological Effects of Hydrogen, Aluminum, and Manganese
 Toxicities in Acid Soil .. 57

CHARLES D. FOY

I. Acid Soil Toxicity ... 57
 A. Components ... 57

II. Hydrogen Ion Toxicity .. 58
 A. Effects on Plants .. 58
 B. Effects on Mineralization of Organic Matter 61

III. Aluminum Toxicity .. 63
 A. Plant Symptoms of Aluminum Toxicity 64
 B. Physiological and Biochemical Effects of Aluminum 64
 C. Aluminum and Rhizobia ... 67
 D. Beneficial Effects of Aluminum 69
 E. Physiology of Differential Aluminum Tolerance 70
CONTENTS

IV. Manganese Toxicity ... 76
 A. Plant Symptoms of Manganese Toxicity 76
 B. Physiological and Biochemical Effects of Excess Manganese . . 78
 C. Manganese and Rhizobia 80
 D. Physiology of Differential Manganese Tolerance 81
V. Conclusions .. 85
References .. 86

3 Physiological Aspects of Calcium, Magnesium, and Molybdenum
Deficiencies in Plants .. 99
RALPH B. CLARK

I. Calcium ... 100
 A. Calcium Uptake .. 100
 B. Calcium Translocation 108
 C. Calcium Functions in Plants 114
 D. Calcium Requirements and Concentrations in Plants 124
II. Magnesium .. 131
 A. Magnesium Uptake 131
 B. Magnesium Translocation 133
 C. Magnesium Functions in Plants 134
 D. Magnesium Requirements and Concentrations in Plants 136
III. Molybdenum ... 140
 A. Molybdenum Uptake 140
 B. Molybdenum Translocation 141
 C. Molybdenum Functions in Plants 141
 D. Molybdenum Requirements and Concentrations in Plants 144
References .. 147

4 Liming Materials and Practices .. 171
STANLEY A. BARBER

I. Liming Materials ... 173
 A. Agricultural Limestone 173
 B. Agricultural Marl 199
 C. Agricultural Slag 200
 D. Miscellaneous Materials for Liming 203
II. Application Methods .. 203
 References .. 205

5 Crop Response to Lime in the Southern United States 211
FRED ADAMS

I. Soils .. 212
 A. Physiographic Provinces 212
 B. Soil Orders .. 213
II. Crops ... 217
III. Lime Use .. 219
 A. Lime Requirement 221
 B. Soil pH and Crop Response 224
 C. Reaction Rate of Lime 231
IV. Nitrogen and Soil Acidity .. 233
V. Subsoil Acidity ... 237
 A. Prevention .. 238
 B. Neutralization .. 239
 C. Effects on Crop Yields ... 240
VI. Factors of Acid Soil Infertility ... 242
 A. Hydrogen Ion Toxicity ... 243
 B. Aluminum Toxicity ... 244
 C. Manganese Toxicity ... 246
 D. Calcium Deficiency ... 249
 E. Magnesium Deficiency ... 252
 F. Molybdenum Deficiency ... 254
VII. Soil pH and Nutrient Availability .. 255
 A. Nitrogen ... 255
 B. Phosphorus ... 256
 C. Potassium ... 257
 D. Calcium and Magnesium .. 257
 E. Sulfur .. 257
 F. Micronutrients .. 258
References .. 259

6 Crop Response to Lime in the Midwestern United States 267

 E. O. MC LEAN AND J. R. BROWN

I. Soils ... 269
 A. Parent Materials of Soils ... 269
 B. Climatic Zones ... 270
 C. Soils of the Midwest ... 271
II. Crops ... 274
III. Lime Use ... 277
 A. Early History ... 277
 B. Lime Use by States .. 277
 C. Lime Requirement of Soils .. 279
IV. Crop Responses to Lime ... 286
 A. Soil pH and Maximum Yields .. 286
 B. Basic Cation Saturation Ratio ... 292
 C. Reduced Tillage ... 294
 D. Liming Organic (Muck) Soils ... 294
 E. Lime-induced Nutrient Deficiencies .. 294
V. Factors of Acid Soil Infertility .. 295
 A. Toxicities ... 295
 B. Deficiencies .. 297
 C. Soil pH and Nutrient Availability ... 299
References .. 299

7 Crop Response to Lime in the Northeastern United States 305

 DOUGLAS J. LATHWELL AND W. SHAW REID

I. Soils of the Region ... 305
II. Crops of the Region ... 308
FOREWORD

Our understanding of the nature, causes, and management of soil acidity continues on the "upward, spiralling merry-go-round" so elegantly described by Hans Jenny in 1961. It is good that it does. Only by properly managing our soils can we be assured of plentiful supplies of food, fiber and shelter, and a clean and healthy environment.

Excessive soil acidity is a continuing problem in many agricultural areas and is increasingly becoming a yield-limiting factor in other areas. The pH of soils of the dryland wheat-growing area of the Pacific Northwest has dropped an average of one unit in the last 20 years. Similar effects are reported from other areas and even more dramatic changes are observed in the surface layers of minimum-tilled fields. Greater understanding and appreciation of these long-term, agriculturally intensified reactions are essential to maintain optimal fertility of our soils.

The factors of acid soil fertility and crop responses to acid soils are complex. Not all acid soils need lime, nor should all lime-responsive soils be brought to the same pH. Soil tests for lime requirement must be selected and calibrated to provide for the differences among soils and among the crops to be grown on them. This monograph highlights knowledge in these and other areas and points out the many challenges that lie ahead. It, as its predecessor, will serve as a benchmark from which future progress can be established.

On behalf of the membership of ASA, CSSA, and SSSA, we express our appreciation to the editor and the authors for their important functions leading to this publication. We acknowledge the help of our society members who reviewed the manuscripts. We are also grateful to the Headquarters staff for editorial and production efforts that allowed this volume to be a reality.

April 1984

K. J. Frey, president
American Society of Agronomy

W. F. Keim, president
Crop Science Society of America

D. R. Nielsen, president
Soil Science Society of America
PREFACE

The first edition of *Soil Acidity and Liming* (published in 1967) was developed and written in response to the need for a reference text on an important, worldwide, agricultural topic. It covered topics ranging from basic chemical concepts to soil acidity to the practical usage of agricultural liming materials. The text was intended to serve as a source of information for agronomists, horticulturists, and others who are interested in efficient crop production on acid soils.

Knowledge about soil acidity and its effects on plant growth and crop production has continued to expand. The basic tenets of acid soil chemistry have not changed during the last 2 decades, but additions and modifications of concepts involving the chemistry of solution aluminum make updating of this topic highly desirable. Significant advances have been made in identifying the role in plant nutrition of elements responsible for acid soil infertility, in particular the effects of too much aluminum and too little calcium.

The relative importance of different crops produced on the acid soils of the United States has changed markedly during the last 30 years. Concurrently, plant breeders have initiated programs to develop cultivars of increasing tolerance to acid soils. Cropping systems have also changed, including the adoption of no-till practices in some areas. These changes have affected liming practices and have created a need for continuing field research so that liming recommendations are updated for new practices.

The intent of the editor and authors of the revised edition of *Soil Acidity and Liming* was to maintain the concept of a reference text on soil acidity, one that is suitable for those involved in research, both soils and plants, and as a supplemental text for graduate students. The edition was expanded to include a chapter on tropical acid soils, an area of increasing concern and interest. A key feature of the text is an effort to explain soil chemical properties and physiological responses of plants. This text was never intended to be a mere catalog of reported data in the literature; authors, instead, have striven to offer interpretations wherever possible.

March 1984

FRED ADAMS, *editor*
Auburn University
Auburn, Alabama
CONTRIBUTORS

Fred Adams
Professor of Soil Chemistry, Department of Agronomy and Soils, Auburn University, Auburn, Alabama

Stanley A. Barber
Professor of Agronomy, Department of Agronomy, Purdue University, West Lafayette, Indiana

J. R. Brown
Professor of Agronomy, Department of Agronomy, University of Missouri, Columbia, Missouri

Ralph B. Clark
Plant Physiologist, Agricultural Research Service, U.S. Department of Agriculture, Department of Agronomy, University of Nebraska, Lincoln, Nebraska

Charles D. Foy
Research Soil Scientist, Plant Stress Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, Maryland

William L. Hargrove
Assistant Professor, Department of Agronomy, University of Georgia, Georgia Agricultural Experiment Station, Experiment, Georgia

Thomas L. Jackson
Professor of Soil Science, Department of Soil Science, Oregon State University, Corvallis, Oregon

Eugene J. Kamprath
Professor of Soil Science, Department of Soil Science, North Carolina State University, Raleigh, North Carolina

Douglas J. Lathwell
Professor of Soil Science, Department of Agronomy, Cornell University, Ithaca, New York

E. O. McLean
Professor of Soil Chemistry, Department of Agronomy, Ohio State University, Columbus, Ohio

W. Shaw Reid
Professor of Soil Science, Department of Agronomy, Cornell University, Ithaca, New York

H. M. Reisenauer
Professor of Soil Science, Department of Land, Air and Water Resources, University of California, Davis, California

Grant W. Thomas
Professor of Agronomy, Department of Agronomy, University of Kentucky, Lexington, Kentucky