Grazing Research: Design, Methodology, and Analysis
Grazing Research: Design, Methodology, and Analysis

Editor
G. C. Marten

Editorial Committee
G. C. Marten, chair
D. P. Hutcheson
M. E. Riewe

Organizing Committee
M. E. Riewe, chair
D. I. Bransby
R. H. Hart
A. G. Matches
F. M. Rouquette, Jr.

Editor-In-Chief CSSA
C. W. Stuber

Editor-In-Chief ASA
G. H. Heichel

Managing Editor
Susan Ernst

CSSA Special Publication Number 16

Crop Science Society of America, Inc.
American Society of Agronomy, Inc.
Madison, Wisconsin, USA

1989
CONTENTS

Foreword .. vii
Preface .. ix
Contributors .. xi

1 Objectives of Grazing Trials
 Richard H. Hart and Carl S. Hoveland 1

2 The Relationship of Herbage Mass and Characteristics to
 Animal Responses in Grazing Experiments
 J.C. Burns, H. Lippke, and D.S. Fisher 7

3 Measurement of Animal Response in Grazing Research
 John A. Stuedemann and Arthur G. Matches 21

4 Measurements of the Plant-Animal Interface in
 Grazing Research
 S.W. Coleman, T.D.A. Forbes, and J.W. Stuth 37

5 Compromises in the Design and Conduct of Grazing
 Experiments
 David I. Bransby 53

6 Compromises and Statistical Designs for Grazing Experiments
 J. Wanzer Drane 69

7 Experimental Design and Statistical Inference: Generalized
 Least Squares and Repeated Measures over Time
 F.G. Giesbrecht 85

8 Time Series, Dynamic Models, and Adaptive Sequential
 Decisions in Grazing Research
 Donald A. Jameson 97

9 Economic Considerations in Grazing Research
 Lucas D. Parsch and L. Allen Torell 109

10 Issues on Modeling Grazing Systems
 Otto J. Loewer 127
FOREWORD

Grazing of pasture and range lands by livestock is an integral component of livestock production systems in the USA and many other countries. Grazing management includes critical decisions concerning the animals and the plants upon which they feed. Profound long-term effects of grazing can be manifested in the classical fence-row photographs of overgrazed and properly grazed range or pasture. Thus, grazing management strategies influence conservation of soil, water, and biological organisms. There is a call for greater diversity as a component of long-term sustainability of agriculture. A livestock component in sustainable agricultural systems contributes to greater options in crop rotation, utilization of forages, and improvement of soil structure and fertility.

Proper methodology is a critical issue in conducting research to develop production management practices for livestock grazing. The interacting effects of animals and plants of various species, age, and condition pose one of the most complex research design problems in agriculture. It is timely that this topic be given special attention as new problems require solutions and new technology becomes available to the researcher. We compliment the organizers of the symposium that resulted in this book. A modern assessment of the technical challenges in conducting grazing research is presented. We expect this book will stimulate additional development in research design and better understanding on how to conduct, interpret, and report results from this important research area.

CALVIN O. QUALSET, president
Crop Science Society of America

EDWARD C. A. RUNGE, president
American Society of Agronomy

GORDON C. MARTEN, editor
Grazing experiments with livestock are required to define input-output relationships that cannot be provided by laboratory, greenhouse, or small field plot studies. Inputs are considered treatments in the design of grazing experiments and may include grazing systems, stocking rates, kinds of pasture plants or animals, pasture fertilization levels, and other alternatives or combinations. Outputs include animal, plant, and/or economic responses. Almost without exception, grazing experiments constitute mission-oriented research and usually should produce results that are directly or indirectly relevant to the livestock producer.

Conducting a proper grazing study poses a considerable challenge. Grazing experiments are usually expensive in terms of land, livestock, equipment, and time. Thus, questions concerning cost and efficiency are relevant and must be addressed by researcher and research administrator alike.

The major concerns in grazing research are to design an experiment that (i) provides for valid comparisons among treatments, (ii) provides a valid error term for evaluating treatment effects, (iii) explores relevant interactions, (iv) provides the data that are useful in extending the applicability of results, (v) provides a reasonable basis for economic assessment of the worth of selected inputs, and/or (vi) defines the relevant input-output relationships in a manner useful to the producer.

Input-output relationships at the plant-animal interface cannot usually be satisfactorily defined without appropriate measures to characterize the dynamics of the sward as well as the response of animals grazing the sward. These relationships must be understood to facilitate mathematical modelling of the grazing ecosystem.

This special publication encompasses the papers from a symposium held at the annual meeting of the Crop Science Society of America in Anaheim, CA, in November 1988. The symposium and this special publication were cosponsored by the Crop Science Society of America, the American Society of Agronomy, the American Forage and Grassland Council, the Society for Range Management, and the American Society of Animal Science.

The participants in the symposium were all experts in their subject. Thus, this special publication will be useful to those involved in the design and execution of grazing research in pasture and range and the interpretation of data derived from grazing experiments. It should also be helpful to those who have responsibility for the review, publication, and/or application of the results from such research.

The Organizing Committee

M. E. RIEWE, chair
Texas A&M Agricultural Research Station
Angleton, Texas

D. I. BRANSBY
Auburn University
Auburn, Alabama

R. H. HART
USDA-ARS
Cheyenne, Wyoming

A. G. MATCHES
Texas Tech University
Lubbock, Texas

F. M. ROUQUETTE, JR.
Texas A&M Agricultural Research and Extension Center
Overton, Texas
CONTRIBUTORS

David I. Bransby
Associate Professor, Department of Agronomy and Soils, Auburn University, Auburn University, AL 36849

J. C. Burns
Plant Physiologist, USDA-ARS and Departments of Crop Science and Animal Science, North Carolina State University, Raleigh, NC 27695

S. W. Coleman
Research Animal Nutritionist, USDA-ARS, Forage and Livestock Research Laboratory, El Reno, OK 73036

J. Wanzer Drane
Professor of Biostatistics, Department of Epidemiology and Biostatistics, School of Public Health, University of South Carolina, Columbia, SC 29208

D. S. Fisher
Plant Physiologist, USDA-ARS and Department of Crop Science, North Carolina State University, Raleigh, NC 27695

T. D. A. Forbes
Grazing Ecologist, Texas A&M University, Uvalde, TX 78801

F. G. Giesbrecht
Professor of Statistics, Department of Statistics, North Carolina State University, Raleigh, NC 27695

Richard H. Hart
Range Scientist, USDA-ARS, High Plains Grasslands Research Station, Cheyenne, WY 82009

Carl S. Hoveland
Terrell Distinguished Professor, Agronomy Department, University of Georgia, Athens, GA 30602

Donald A. Jameson
Professor, Department of Range Science, Colorado State University, Fort Collins, CO 80523

H. Lippke
Associate Professor, Texas Agricultural Experiment Station, Angleton, TX 77516

Otto J. Loewer
Professor and Head, Biological and Agricultural Engineering Department, University of Arkansas, Fayetteville, AR 72701

Arthur G. Matches
Thornton Professor, Department of Agronomy, Horticulture, and Entomology, Texas Tech University, Lubbock, TX 79409

Lucas D. Parsch
Associate Professor, Agricultural Economics, University of Arkansas, Fayetteville, AR 72701

John A. Stuedemann
Animal Scientist, USDA-ARS, Southern Piedmont Conservation Research Center, Watkinsville, GA 30677

J. W. Stuth
Professor, Department of Range Science, Texas A&M University, College Station, TX 77843

L. Allen Torell
Associate Professor, Department of Agricultural Economics, New Mexico State University, Las Cruces, NM 88003