Yield Gains in Major U.S. Field Crops
Contents

Foreword | vii
Preface | ix
Contributors | xi

Chapter 1 | 1
Barley
Tom Blake, Victoria Blake, and Jochim Wiersma

Chapter 2 | 13
Cotton
B. Todd Campbell, Debbie Boykin, Zaid Abdo, and William R. Meredith, Jr.

Chapter 3 | 33
Cool-Season Forages
E. Charles Brummer and Michael D. Casler

Chapter 4 | 53
Lettuce and Spinach
Ivan Simko, Ryan J. Hayes, Beiquan Mou, and James D. McCreight

Chapter 5 | 87
Edible Grain Legumes
George J. Vandemark, Mark A. Brick, Juan M. Osorno, James D. Kelly, and Carlos A. Urrea

Chapter 6 | 125
Maize
Stephen Smith, Mark Cooper, Joseph Gogerty, Carlos Löffler, Delos Borcherding, and Kevin Wright

Chapter 7 | 173
Peanut
C. Corley Holbrook, Tim B. Brenneman, H. Thomas Stalker, W. Carroll Johnson III, Peggy Ozias-Akins, Ye Chu, George Vellidis, and Duncan McClusky

Chapter 8 | 195
Potato
Shelley H. Jansky, David M. Spooner, and Paul C. Bethke
Chapter 9 | 219
Rangeland and Warm-Season Forage Grasses
Kevin B. Jensen and William F. Anderson

Chapter 10 | 267
Rice

Chapter 11 | 293
Sorghum
Roger Monk, Cleve Franks, and Jeff Dahlberg

Chapter 12 | 311
Soybean

Chapter 13 | 357
Sugarbeet
Lee Panella, Stephen K. Kaffka, Robert T. Lewellen, J. Mitchell McGrath, Mike S. Metzger, and Carl A. Strausbaugh

Chapter 14 | 397
Sugarcane
Serge J. Edmé, Andru Suman, and Collins Kimbeng

Chapter 15 | 433
Sunflower
Brent S. Hulke and Larry W. Kleingartner

Chapter 16 | 459
Wheat
Robert Graybosch, Harold E. Bockelman, Kimberly A. Garland-Campbell, David F. Garvin, and Teshome Regassa
Foreword

Few books in history have been planned with the focus and detail included in *Yield Gains in Major U.S. Field Crops*. From the beginning the book was based on a critical assessment of the yield gains across the crops essential for feeding a future population of 9 billion. Crafted as an intellectual challenge impossible for an individual scientist or team to answer, it relied on bringing together 65 scientists and their teams to develop the background data for the book.

There is no doubt that this book will be fundamental to predicting future gains from plant breeding and will be an instant classic for its powerful assessment of breeding efforts to this point in time. While each crop is a story in itself, the unique coverage of so many crops in one book provides a vision of the power of plant breeding never before assembled.

We hope that this CSSA Special Publication is a difference-maker for our scientific societies and our society at large.

David D. Baltensperger, 2014 CASA President
David B. Mengel, 2014 ASA President
Jan W. Hopmans, 2014 SSSA President
Some 8,000 to 10,000 years ago humankind crossed a crucial threshold as groups began to save seed to plant for harvest during the next season. A bond of codependence between domesticated cultivated varieties and not only farmers, but also the whole of society, was created. Today, the dependence of society on this bond of codependence has become more critical due to increasing human populations and the need to farm more sustainably by making the most effective use of available resources while conserving biodiversity and protecting the environment from pollution. However, this bond becomes increasingly tenuous as an increasing proportion of society loses touch with even an elementary understanding of how or where food is created. Consequently, policymakers, the public at large, and even prospective plant breeders, agronomists, soil scientists, statisticians, information management experts, conservationists, physiologists, pathologists, and experts in sequencing and reading genomic information—to name but a few—fail to engage positively in the field of plant breeding and agriculture. Yet the quality and sustainability of life on Earth are in very large measure connected with how food, fiber, and fuel are produced. It is therefore imperative to encourage a greater understanding and informed debate regarding how food and fiber are produced to ensure continued productivity through long-term stewardship and the most effective use of critical resources such as water, soil, genetic resources, and human intellect.

In 1984 the Crop Science Society of America (CSSA) published the proceedings of a 1981 symposium as Genetic Contributions to Yield Gains of Five Major Crop Plants. These crops were corn, cotton, potato, sorghum, and wheat. This was a seminal publication stimulating the publication of further research in numerous other countries and on additional crops to determine the elements contributing to advances in crop productivity, their interactions, and to monitor the rate of progress. In 2012 a group of us decided that it was time to revisit the status of productivity including genetic gain in each of these five major crop species. But why stop there? We developed a proposal for a book that would include all major U.S. field crops. We were fortunate to gain the enthusiastic support of numerous authors who agreed to contribute the chapters, many other experts who agreed to be reviewers, and CSSA, who agreed to sponsor and to publish the book.

This book provides a fascinating snapshot-in-time account of the productivity status of all major U.S. field crops. Each crop has a different story to tell. Much has changed in the field of plant breeding, biotechnology, and agronomy during the 30 years that have passed since the previous CSSA book was published. We earnestly hope that these chapters will provide insights for many from various fields into how each crop is being bred and produced today, with some historical perspective and also a look at future challenges and opportunities.

In closing, we are well aware that we have not covered productivity of crops using organic farming methods. This subject is a gap that should be
filled. However, we would make a plea that methods of farming be examined more scientifically and less from the perspective of marketing. The more that is known about how food is produced and the resources necessary to sustain a productive agriculture, the better the quality of debate. Quality discourse is imperative to rebuild and strengthen the bond of codependence we have with the cultivated plant species upon which each of us depends for health, economic, and political security.

Stephen Smith, Brian Diers, James Specht, and Brett Carver, Editors
Contributors

Z. Abdo USDA-ARS, Richard B. Russell Agricultural Research Ctr., 950 College Station Rd., Athens, GA 30605 (zaid.abdo@ars.usda.gov)

W.F. Anderson USDA-ARS, Crop Genetics and Breeding Research Unit, 115 Coastal Way, Tifton, GA 31793 (Bill.anderson@ars.usda.gov)

P.C. Bethke USDA-ARS, Vegetable Crops Research Unit, 1575 Linden Dr., Madison, WI 53706-1590 (paul.bethke@ars.usda.gov)

T. Blake Montana State Univ., Dep. of Plant Science & Pathology, Room 109, Agric. BioSci Building, Bozeman, MT 59717 (blake@montana.edu)

V. Blake USDA-ARS, Western Regional Research Ctr., 800 Buchanan Street, Albany, CA 94710 (victoria.blake@ars.usda.gov)

H.E. Bockelman Small Grains and Potato Germplasm Research, 1691 S 2700 W, Aberdeen, ID, 83210 (Harold.Bockelman@ars.usda.gov)

D. Borcherding DuPont Pioneer, 205 Fair View Dr., Dallas Ctr., IA 50063 (Delos.Borcherding@Pioneer.com)

D. Boykin USDA-ARS, Jamie Whitten Delta States Research Ctr., 141 Experiment Station Rd., Stoneville, MS 38776 (debbie.boykin@ars.usda.gov)

T.B. Brenneman Univ. of Georgia, Plant Sci. Bldg., 2360 Rainwater Rd., Tifton, GA 31793-5766 (arachis@uga.edu)

M.A. Brick C113 Plant Sciences Building, Colorado State Univ., Fort Collins, CO 80523 (Mark.Brick@ColoState.edu)

E.C. Brummer Univ. of California, Dep. of Plant Sciences, One Shields Ave., Davis, CA 95616; formerly, Forage Improvement Division, The Samuel Roberts Noble Foundation, 2510 Sam Noble Pkwy., Ardmore, OK 73401 (ecbrummer@ucdavis.edu)

B.T. Campbell USDA-ARS, Coastal Plains Soil, Water, and Plant Research Ctr., 2611 W. Lucas St., Florence, SC 29501 (todd.campbell@ars.usda.gov).

B. Carver Oklahoma State Univ., 368 North Ag Hall, Plant & Soil Science, Stillwater, OK 74078-6028 (brett.carver@okstate.edu)

M.D. Casler USDA-ARS, U.S. Dairy Forage Research Ctr., 1925 Linden Dr., Madison, WI 53706-1108 (mdcasler@wisc.edu)

Y. Chu Univ. of Georgia, NESPAL, 2360 Rainwater Rd., Tifton, GA 31793-5766 (ye.chu.test@gmail.com)

M. Cooper DuPont Pioneer, 7250 NW 62nd Ave., P.O. Box 552, Johnston, IA 50131-0552 (Mark.Cooper@Pioneer.com)

J. Dahlberg Kearney Agric. Research and Ext. Ctr., 9240 S. Riverbend Ave., Parlier, CA 93648 (jadahlberg@ucanr.edu)

J.F.F. de Toledo Avenida dos Imigrantes, 2715, Apt. 104, Bairro Centro, 78890-000, Sorriso, MT, Brazil (JToledo@nidera.com.br)

B.W. Diers Dep. of Crop Sciences, 268 National Soybean Research Ctr., 1101 W. Peabody Dr., Univ. of Illinois, Urbana, IL 61801 (bdiers@illinois.edu)

S.J. Edmé USDA-ARS Sugarcane Field Station, 12990 U.S. Hwy. 441 N., Canal Point, FL 33438 (serge.edme@ars.usda.gov)

C. Franks Dupont Pioneer, 2260 CR 60, Plainview, TX 79072 (cleve.franks@pioneer.com)
Yield Gains in Major U.S. Field Crops

G.J. Vandemark USDA-ARS, Grain Legume Genetics and Physiology Research Unit, 303 Johnson Hall, Washington State Univ., Pullman, WA 99164 (george.vandemark@ars.usda.gov)

G. Vellidis Univ. of Georgia, Engineering Bldg., 2329 Rainwater Rd., Tifton, GA 31793 (yiorgos@uga.edu)

J. Wiersma Univ. of Minnesota, NW Research and Outreach Ctr., 2900 University Ave., Crookston, MN 56716 (wiers002@umn.edu)

K. Wright DuPont Pioneer, 7300 NW 62nd Ave., P.O. Box 1004, Johnston, IA 50131-1004 (Kevin.D.Wright@Pioneer.com)