METHODS OF SOIL ANALYSIS

PART 2

Microbiological and Biochemical Properties
Soil Science Society of America Book Series

Books in the series are available from the Soil Science Society of America, 677 South Segoe Road, Madison, WI 53711 USA.

 J. B. Dixon and S. B. Weed, editors R. C. Dinauer, managing editor

 H. H. Cheng, editor S. H. Mickelson, managing editor

 R. L. Westerman, editor S. H. Mickelson, managing editor

 J. J. Mortvedt et al., editors S. H. Mickelson, managing editor

 R. W. Weaver et al., editors S. H. Mickelson, managing editor
CONTENTS

FOREWORD ... xv
PREFACE ... xvii
CONTRIBUTORS .. xix
CONVERSION FACTORS FOR SI AND NON-SI UNITS xxiii

Chapter 1 Soil Sampling for Microbiological Analysis 1

A. G. WOLLUM, II

1-1 Principles .. 2
1-2 Methods ... 8
1-3 Sources of Error ... 12
1-4 Concluding Remarks ... 13
REFERENCES ... 13

Chapter 2 Statistical Treatment of Microbial Data 15

TIMOTHY B. PARKIN AND JOSEPH A. ROBINSON

2-1 Characteristics of the Lognormal Distribution 16
2-2 Diagnosing Lognormality ... 17
2-3 Estimating Population Parameters from Sample Data ... 21
2-4 Selecting the Appropriate Location Parameter 25
2-5 Hypothesis Testing .. 28
2-6 Sample Number Requirements 31
2-7 Concluding Remarks ... 32
APPENDIX 1 .. 34
APPENDIX 2 .. 37
REFERENCES ... 38

Chapter 3 Soil Sterilization 41

DUANE C. WOLF AND HORACE D. SKIPPER

3-1 Principles .. 41
3-2 Moist Heat .. 42
3-3 Dry Heat ... 43
3-4 Gamma Irradiation .. 44
3-5 Microwave Irradiation ... 45
3-6 Gaseous Compounds .. 45
3-7 Nongaseous Compounds .. 47
3-8 Conclusions .. 49
REFERENCES ... 49

Chapter 4 Soil Water Potential 53

K. J. McINNES, R. W. WEAVER, AND M. J. SAVAGE

4-1 Principles .. 54
4-2 Materials ... 55
4-3 Procedure .. 55
4-4 Comments ... 57
REFERENCES ... 57
Table of Contents

Chapter 5 Most Probable Number Counts

PAUL L. WOOMER

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-1 Principles</td>
<td>60</td>
</tr>
<tr>
<td>5-2 Methodology</td>
<td>65</td>
</tr>
<tr>
<td>5-3 Comments</td>
<td>77</td>
</tr>
<tr>
<td>ACKNOWLEDGMENT</td>
<td>78</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>78</td>
</tr>
</tbody>
</table>

Chapter 6 Light Microscopic Methods for Studying Soil Microorganisms

PETER J. BOTTOMLEY

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-1 Sampling of Soil for Microscopic Observation</td>
<td>81</td>
</tr>
<tr>
<td>6-2 Microscopic Enumeration of Total Bacteria in Soil</td>
<td>82</td>
</tr>
<tr>
<td>6-3 Determining the Proportion of Viable Soil Bacteria Using a Cell Elongation Assay</td>
<td>92</td>
</tr>
<tr>
<td>6-4 Determining the Proportion of Viable Soil Bacteria by Following the Reduction of Tetrazolium Dyes to Formazan</td>
<td>94</td>
</tr>
<tr>
<td>6-5 Microscopic Determination of the Mycelial Length of Soil Fungi</td>
<td>96</td>
</tr>
<tr>
<td>6-6 Determining the Proportion of Metabolically Active Fungal Mycelia by Following the Hydrolysis of Fluorescein Diacetate</td>
<td>98</td>
</tr>
<tr>
<td>6-7 Determining the Proportion of Metabolically Active Fungal Mycelia by Following the Reduction of Tetrazolium Dyes to Formazan</td>
<td>99</td>
</tr>
<tr>
<td>6-8 Determining the Weight of Soil Biomass from Microscopic Estimates of Biovolume</td>
<td>100</td>
</tr>
<tr>
<td>6-9 Microscopic Enumeration of Bacteria with Fluorescently Labeled Oligonucleotides Directed at Specific Regions of 16S Ribosomal RNA</td>
<td>101</td>
</tr>
<tr>
<td>ACKNOWLEDGMENT</td>
<td>104</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>104</td>
</tr>
</tbody>
</table>

Chapter 7 Viruses

J. SCOTT ANGLE

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-1 General Principles of Analysis</td>
<td>109</td>
</tr>
<tr>
<td>7-2 Phages</td>
<td>110</td>
</tr>
<tr>
<td>7-3 Enteric Viruses</td>
<td>114</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>115</td>
</tr>
</tbody>
</table>

Chapter 8 Recovery and Enumeration of Viable Bacteria

DAVID A. ZUBERER

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-1 Principles of Enumerating Soil Bacteria</td>
<td>120</td>
</tr>
<tr>
<td>8-2 Materials and Equipment</td>
<td>122</td>
</tr>
<tr>
<td>8-3 Collection and Preparation of Soil Samples</td>
<td>123</td>
</tr>
<tr>
<td>8-4 Release of Bacteria from Soils</td>
<td>124</td>
</tr>
<tr>
<td>8-5 Diluents Used in Recovery and Enumeration of Soil Bacteria</td>
<td>125</td>
</tr>
<tr>
<td>8-6 Preparation of Serial Dilutions</td>
<td>127</td>
</tr>
<tr>
<td>8-7 Plating Techniques</td>
<td>130</td>
</tr>
<tr>
<td>8-8 Media for Enumeration of Soil Bacteria</td>
<td>134</td>
</tr>
<tr>
<td>8-9 Analysis and Presentation of Plate Count Data</td>
<td>139</td>
</tr>
<tr>
<td>8-10 Conclusion</td>
<td>141</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>142</td>
</tr>
</tbody>
</table>
CONTENTS

Chapter 9 Coliform Bacteria

RONALD F. TURCO

- 9-1 Recovery and Enumeration of Fecal Coliforms from Soil 147
- 9-2 Detection and Enumeration of Total Coliforms ... 151
- 9-3 Rapid Test for Detection of *E. coli* in Soil ... 154
- 9-4 Direct Methods for Detection of *E. coli* in Soil ... 156

ACKNOWLEDGMENT .. 156

REFERENCES ... 157

Chapter 10 Autotrophic Nitrifying Bacteria

EDWIN L. SCHMIDT AND L. W. BELSER

- 10-1 Enumeration by Most Probable Number ... 160
- 10-2 Diversity of Nitrifiers ... 163
- 10-3 Immunofluorescence Examination ... 165
- 10-4 Isolation of Nitrifiers ... 167
- 10-5 Maintenance of Pure Cultures ... 169
- 10-6 Nitrifying Activity in Soils ... 171

REFERENCES ... 176

Chapter 11 Free-living Dinitrogen-fixing Bacteria

ROGER KNOWLES AND WILFREDO LASERNA BARRAQUIO

- 11-1 The Acetylene Reduction Assay ... 180
- 11-2 Methods for Dinitrogen Fixers in General .. 181
- 11-3 Methods for Azotobacteraceae .. 183
- 11-4 Method for Methanotrophs ... 186
- 11-5 Method for Hydrogen-Using Dinitrogen Fixers ... 188
- 11-6 Method for Cyanobacteria .. 189
- 11-7 Method for Photosynthetic Purple Nonsulfur Bacteria 191
- 11-8 Method for Clostridia ... 192
- 11-9 Method for Sulfate-Reducing Bacteria .. 194

REFERENCES ... 195

Chapter 12 Legume Nodule Symbionts

R.W. WEAVER AND PETER H. GRAHAM

- 12-1 Nodule Collection and the Isolation of Symbionts 200
- 12-2 Cultivation of Nodule Symbionts ... 203
- 12-3 Maintenance of Cultures ... 205
- 12-4 Enumeration of Nodule Symbionts in Soil and Inoculants 206
- 12-5 Inoculants for Field Experimentation ... 210
- 12-6 Inoculation of Seed .. 213
- 12-7 Field Experimentation Involving Inoculation ... 215
- 12-8 Growth-Pouch Infection Assays ... 216

REFERENCES ... 218
Chapter 13 Anaerobic Bacteria and Processes

HEINRICH F. KASPAR AND JAMES M. TIEDJE

13-1 Principles ... 224
13-2 Methods for Removal of Oxygen 226
13-3 Methods for Reduction of Media 229
13-4 Redox Indicators .. 231
13-5 Culture Methods ... 233
13-6 Enumeration Methods ... 235
13-7 Simple Method to Carry Out Anaerobic Incubations of Soil 240

ACKNOWLEDGEMENTS ... 241
REFERENCES ... 242

Chapter 14 Denitrifiers

JAMES M. TIEDJE

14-1 Nitrate Reducing Processes ... 245
14-2 Key Physiological and Ecological Features of Respiratory Denitrifiers 250
14-3 Enumeration of Denitrifiers .. 251
14-4 Enumeration of Dissimilatory Nitrate to Ammonium Reducers 255
14-5 Denitrifier Enzyme Activity ... 256
14-6 Isolation of Denitrifiers ... 257
14-7 Confirmation of Respiratory Denitrification 259
14-8 Taxonomic Identification ... 265

ACKNOWLEDGMENT .. 266
REFERENCES ... 265

Chapter 15 Actinomycetes

E. M. H. WELLINGTON AND I. K. TOTH

15-1 Enumeration, Enrichment, and Isolation 270
15-2 Isolation of Physiological Groups 279
15-3 Grouping and Identification of Actinomycetes 284

REFERENCES ... 287

Chapter 16 Frankia and the Actinorhizal Symbiosis

DAVID D. MYROLD

16-1 Characteristics of Frankia ... 291
16-2 Isolation, Culturing, and Maintenance of Frankia Strains 294
16-3 Quantification and Differentiation of Frankia Strains 305
16-4 Characterization of Frankia in Symbiosis 309
16-5 Quantification in Soil .. 316
16-6 Conclusion ... 320

ACKNOWLEDGMENTS .. 320
REFERENCES ... 322

Chapter 17 Filamentous Fungi

DENNIS PARKINSON

17-1 Qualitative Studies: Isolation Methods 330
17-2 Quantitative Methods .. 342

REFERENCES ... 347
Chapter 18 Vesicular-Arbuscular Mycorrhizal Fungi

DAVID M. SYLVIA

18-1 Quantification of Vesicular-Arbuscular Mycorrhizal Propagules in Soil 352
18-2 Quantification of Vesicular-Arbuscular Mycorrhizal Colonization in Roots ... 353
18-3 Quantification of Vesicular-Arbuscular Mycorrhizal External Hyphae .. 357
18-4 Recovery of Vesicular-Arbuscular Mycorrhizal Fungal Spores ... 360
18-5 Identification of Vesicular-Arbuscular Mycorrhizal Fungi ... 360
18-6 Assessment of Growth Response and Selection of Effective Isolates ... 361
18-7 Production and Use of Vesicular-Arbuscular Mycorrhizal Inocula .. 366
18-8 Monoxenic Cultures for Basic Research ... 372
REFERENCES ... 372

Chapter 19 Isolation of Microorganisms Producing Antibiotics

JEFFRY J. FUHRMANN

19-1 General Principles .. 380
19-2 Microbiological Media .. 382
19-3 Preparation of Inocula ... 384
19-4 Dual Culture Detection Methods .. 385
19-5 Culture Filtrate Methods .. 389
19-6 Screening Methods ... 393
19-7 Methods for Selected Classes of Compounds 396
19-8 Concluding Comments ... 402
REFERENCES ... 403

Chapter 20 Microbiological Procedures for Biodegradation Research

DENNIS D. FOCHT

20-1 The Enrichment Culture ... 409
20-2 Isolation of Pure Cultures .. 412
20-3 Maintenance of Cultures ... 413
20-4 Growth in Liquid Cultures .. 415
20-5 Preparation of Washed Cell Suspensions 418
20-6 Preparation and Use of Cell-Free Extracts 419
20-7 Oxygen Consumption ... 421
20-8 Chloride Determination .. 423
20-9 Conclusion .. 424
REFERENCES ... 424

Chapter 21 Algae and Cyanobacteria

F. BLAINE METTING, JR.

21-1 Identification of Soil Algae and Cyanobacteria 428
21-2 Direct Methods for Enumeration ... 432
21-3 Indirect Methods for Enumeration .. 440
21-4 Methods for Isolation and Purification of Microalgal Cultures 444
21-5 Methods for Growth and Storage of Microalgal Cultures 447
21-6 Methods for Estimating Photosynthesis 453
21-7 Methods for Measuring Cyanobacterial Dinitrogen Fixation 454
21-8 Methods for Studying Endosymbiotic Cyanobacteria in Cycad Roots 454
ACKNOWLEDGMENT ... 455
REFERENCES ... 456
Chapter 22 Nematodes

RUSSELL E. INGHAM

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>22–1 Nematode Sampling</td>
<td>461</td>
</tr>
<tr>
<td>22–2 Extraction of Nematodes from Soil</td>
<td>469</td>
</tr>
<tr>
<td>22–3 Extraction of Nematodes from Plant Material</td>
<td>477</td>
</tr>
<tr>
<td>22–4 Microscopic Observation and Identification of Nematodes</td>
<td>479</td>
</tr>
<tr>
<td>22–5 Nematode Identification</td>
<td>482</td>
</tr>
</tbody>
</table>

REFERENCES

487

Chapter 23 Protozoa

ELAINE R. INGHAM

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>23–1 First Considerations</td>
<td>491</td>
</tr>
<tr>
<td>23–2 Protozoan Ecology</td>
<td>494</td>
</tr>
<tr>
<td>23–3 Methods of Enumeration</td>
<td>498</td>
</tr>
<tr>
<td>23–4 Identification</td>
<td>509</td>
</tr>
<tr>
<td>23–5 Summary</td>
<td>511</td>
</tr>
</tbody>
</table>

ACKNOWLEDGMENT

511

REFERENCES

512

Chapter 24 Arthropods

ANDREW R. MOLDENKE

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>24–1 Principles</td>
<td>518</td>
</tr>
<tr>
<td>24–2 Methods</td>
<td>518</td>
</tr>
<tr>
<td>24–3 Processing the Extracted Biota Sample</td>
<td>528</td>
</tr>
<tr>
<td>24–4 Biota Identification</td>
<td>531</td>
</tr>
<tr>
<td>24–5 Preservation and Archiving</td>
<td>532</td>
</tr>
<tr>
<td>24–6 Archiving</td>
<td>533</td>
</tr>
<tr>
<td>24–7 Rearing</td>
<td>535</td>
</tr>
<tr>
<td>24–8 Statistical Methods to Analyze Diversity</td>
<td>538</td>
</tr>
</tbody>
</table>

REFERENCES

539

Chapter 25 Carbon Utilization and Fatty Acid Profiles for Characterization of Bacteria

A. C. KENNEDY

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>25–1 Characterization of Bacteria</td>
<td>544</td>
</tr>
<tr>
<td>25–2 Carbon Source Utilization</td>
<td>544</td>
</tr>
<tr>
<td>25–3 Fatty Acid Analysis</td>
<td>551</td>
</tr>
</tbody>
</table>

REFERENCES

553

Chapter 26 Multilocus Enzyme Electrophoresis Methods for the Analysis of Bacterial Population Genetic Structure

B. D. EARDLY

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>26–1 Principles</td>
<td>559</td>
</tr>
<tr>
<td>26–2 Methods</td>
<td>562</td>
</tr>
</tbody>
</table>

REFERENCES

572
Chapter 33 Marking Soil Bacteria with lacZY
T. E. STALEY AND D. J. DRAHOS

33–1 Principles 691
33–2 Materials 693
33–3 Procedure 696
33–4 Exconjugant-Type Isolate Vigor 700
33–5 Marker Stability 701
33–6 Recovery from Nonsterile Soil 702
33–7 Attributes and Deficiencies 703
33–8 Comments 704
REFERENCES 705

Chapter 34 Detection of Specific DNA Sequences in Environmental Samples via Polymerase Chain Reaction
IAN L. PEPPER AND SURESH D. PILLAI

34–1 Theory 709
34–2 Primer Design and Amplification Protocol 710
34–3 Optimization of Amplification 714
34–4 Identification of Amplified Products 717
34–5 Quality Control 717
34–6 Specificity of Amplification 719
34–7 Sensitivity of Amplification 720
34–8 Applications in Environmental Microbiology 721
REFERENCES 725

Chapter 35 Isolation and Purification of Bacterial DNA from Soil
WILLIAM E. HOLBEN

35–1 General Considerations 729
35–2 Bacterial Fractionation Approach for Recovery of Bacterial Community DNA 731
35–3 Direct Lysis Approach for the Recovery of Total Bacterial Community DNA 733
35–4 Bacterial Fractionation Protocol 736
35–5 Direct Lysis Protocol 741
35–6 Fractionation of DNA Gradients, Final Purification and Quantitation of Bacterial Community DNA 743
ACKNOWLEDGMENTS 750
REFERENCES 750

Chapter 36 Microbial Biomass
W. R. HORWATH AND E. A. PAUL

36–1 Soil Sampling, Preparation, and Storage 754
36–2 Physiological Methods 754
CONTENTS

36–3 Chemical Methods ... 763
36–4 Comparison of Methods ... 770
REFERENCES ... 771

Chapter 37 Soil Enzymes 775
M. A. TABATABAI

37–1 Principles .. 778
37–2 Factors Affecting Rates of Enzyme Reaction 778
37–3 Assay of Enzymes in Soil ... 790
REFERENCES ... 826

Chapter 38 Carbon Mineralization 835
L. M. ZIBILSKE

38–1 General Principles .. 836
38–2 Experimental Principles ... 836
38–3 Field Methods .. 841
38–4 Laboratory Methods ... 850
REFERENCES ... 859

Chapter 39 Isotopic Methods for the Study of Soil Organic Matter Dynamics 865
DUANE C. WOLF, J. O. LEGG, AND THOMAS W. BOUTTON

39–1 Decomposition of 14C-Labeled Organic Matter in Soils 866
39–2 13C Natural Abundance Technique: Background and Principles 875
39–5 Conclusions ... 900
REFERENCES ... 901

Chapter 40 Practical Considerations in the Use of Nitrogen Tracers in Agricultural and Environmental Research 907
R. D. HAUCK, J. J. MEISINGER, AND R. L. MULVANEY

40–1 Preparing 15N-Labeled Materials ... 909
40–2 Field Study Techniques .. 919
40–3 Preparing for and Measuring Nitrogen-Isotope Ratio 935
40–4 Sources of Nitrogen-15 Supply and Analytical Service 942
REFERENCES ... 943

Chapter 41 Nitrogen Availability Indices 951
L. G. BUNDY AND J. J. MEISINGER

41–1 Current Status of Nitrogen Availability Indices 951
41–2 Methods .. 955
REFERENCES ... 979
Chapter 42 Nitrogen Mineralization, Immobilization, and Nitrification 985

STEPHEN C. HART, JOHN M. STARK, ERIC A. DAVIDSON, AND MARY K. FIRESTONE

42-1 Measurement of Gross Nitrogen-Transformation Rates 987
42-2 Field Methods for Estimating Net Rates of Nitrogen Transformations 999
42-3 Laboratory Methods for Estimating Net Nitrogen Transformation Rates 1006
42-4 Laboratory Methods for Assessing Nitrification 1009
42-5 Coda 1015
REFERENCES 1016

Chapter 43 Dinitrogen Fixation 1019

R. W. WEAVER AND SETH K. A. DANSO

43-1 Acetylene Reduction 1019
43-2 Nitrogen Difference 1025
43-3 Nitrogen-15 Isotope Techniques 1030
43-4 Use of Dinitrogen-15 Gas 1038
REFERENCES 1043

Chapter 44 Measuring Denitrification in the Field 1047

A. R. MOSIER AND LEIF KLEMEDETTSON

44-1 Methods 1048
44-2 Experimental Protocols 1049
44-3 Problems with Gas Sampling and Storage Containers 1061
44-4 Gas Diffusion Problems 1062
REFERENCES 1062

Chapter 45 Sulfur Oxidation and Reduction in Soils 1067

M. A. TABATABAI

45-1 Sulfur Oxidation 1068
45-2 Sulfate Reduction 1071
REFERENCES 1076

Chapter 46 Iron and Manganese Oxidation and Reduction 1079

WILLIAM C. GHIORSE

46-1 Iron-Depositing and Manganese-Oxidizing Heterotrophs 1081
46-2 Iron-Oxidizing Autotrophs 1086
46-3 Iron- and Manganese-Reducing Heterotrophs 1090
ACKNOWLEDGMENT 1094
REFERENCES 1094

Subject Index 1097
FOREWORD

The methods pertinent to soil microbiology were formerly included in Part 2 of the Agronomy Monograph No. 9, Methods of Soil Analysis. Since the 2nd edition of this document, the number of biochemical and microbiological methods have expanded greatly. In addition because the clientele of scientists engaged in these efforts are primarily soils based, the ASA Board of Directors in 1993 elected to place this document in the SSSA Book Series. It is most refreshing and encouraging to see this stand-alone contribution specifically dedicated to soil microbiological and biochemical methods. This text will be well received by an ever-expanding spectra of biogeoscientists. It is very timely given the rise in public and private interests in soil and water quality, biodiversity, biodegradation, terrestrial ecology, environmental quality protection, sustainability of the biosphere and issues of global climatic change. For too long soil quality has been defined in terms of soil physical and chemical attributes with little or no regard to biological components. Part of this oversight has been a function of techniques available to accurately identify, define and quantify biological health and diversity. Another aspect is the rather recent explosion of interest and awareness among geoscientists in the functionality and import of soil microbiological and biochemical attributes in near-surface earth processes. The methods reported herein are at the cutting edge of science. Analytical techniques range in resolution from whole organisms to molecular fragments. In unravelling the identity and behavior of the complex soil biological system, temporal and dynamic diversity are considered in sampling methods. The authors represent a select spectra in biogeoscience expertise and career development. Such a synergistic assemblage of scientists assures that the methodology presented is current and relevant. The document is comprehensive in scope, interdisciplinary in character, and offers a high probability of acceptance among biologists. These methods will serve as the standard bearer for both professional and practicing biological scientists. It is the goal that common methodology will enhance collaboration and interchange among scientists and generate data sets using similar analytical approaches. We commend the authors and editors for their diligence and genius in bringing this new book to fruition in such a timely manner. This addition to the SSSA Book Series, will be well received and widely used by a growing number of biogeoscientist professionals wishing to document soil microbiological-biochemical attributes in near surface earth systems.

Larry P. Wilding, president
Soil Science Society of America
The books, *Methods of Soil Analysis*—Parts 1 and 2, published as Agronomy Monograph No. 9 have been the primary references on analytical methods used by soil scientists and persons in other disciplines involved with making measurements on soils. Part 2 of the second edition covered both methods on soil chemistry and soil microbiology. The need for more extensive coverage in both of these areas resulted in necessity of dividing Part 2 into two new books. One covering the topic of soil chemistry and the second covering soil microbiology and soil biochemistry. Revision was so extensive and involved so many new authors that it seemed best to consider this book a new publication rather than a third edition. It is published as one of the Soil Science of America Book Series.

Division of some subject matter between the book on chemical methods for soil analysis and this book was not always straightforward because some chemical methods are needed in measuring microbiological and biochemical processes. In such cases, a chemical method is provided within chapters of this book but the depth of coverage on theory is not complete nor are alternative methods presented as is the case for the book on soil chemical methods. Our desire was to make it possible to use the methods in this book independently without having to purchase both books.

Early in the book the topics of statistical methods, soil sampling, and measurement of soil moisture tension are covered. These chapters were not covered in the previous editions of Part 2 but are particularly important for investigations in soil microbiology and biochemistry. Several methods are provided on use of molecular techniques that were not in previous editions but are needed in many modern soil microbiology laboratories. The treatment of the material on molecular topics is such that a person would not need extensive training in molecular techniques to take advantage of the methods.

It is hoped that many laboratories outside of soil science will take advantage of the methods contained in this book. They will be particularly relevant and useful to laboratories with interest in environmental microbiology or bioremediation. Analytical methods are essential to progress in science and the methods presented in this book are recognized by soil scientists as being among the best currently available. All chapters were reviewed by persons having expertise on particular methods, by an associate editor, and by the editor. The help of the many reviewers,
efforts and patience of authors, and advice from the editorial board are all gratefully acknowledged. A book such as this one is very much a team effort and is beyond the capability of any individual or small group of individuals.

R. W. Weaver, editor
Texas A&M University
College Station, Texas

J. Scott Angle, associate editor
University of Maryland
College Park, Maryland

Peter J. Bottomley, associate editor
Oregon State University
Corvallis, Oregon
CONTRIBUTORS

J. Scott Angle
Professor of Agronomy, Agronomy Department, University of Maryland, College Park, MD 20742

Wilfredo Laserna Barraquio
Associate Professor of Microbiology, Institute of Biology, University of the Philippines, Diliman, QL 1101, Philippines

L. W. Belser
School of Science and Computer Studies, Nelson Polytechnic, Nelson, New Zealand

D. F. Bezdicek
Professor of Soils, Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164-6420

Peter J. Bottomley
Professor of Microbiology and Soil Science, Department of Microbiology, Oregon State University, Corvallis, OR 97331-3802

Thomas W. Boutton
Associate Professor of Ecology, Department of Rangeland Ecology and Management, Texas A&M University, College Station, TX 77843-2126

L. G. Bundy
Professor of Soil Science, Department of Soil Science, University of Wisconsin, Madison, WI 53706

Seth K. A. Danso
Technical Officer, Soil Fertility and Crop Production Section, Joint FAO/IAEA Division, International Atomic Energy Agency, Wagramerstrasse 5, P.O. Box 100, A-1400 Vienna, Austria

Eric A. Davidson
Associate Research Scientist, The Woods Hole Research Center, P.O. Box 296, Woods Hole, MA 02543

D. J. Drahos
Director of Research and Development and Senior Scientist, SBP Technologies, Inc.; Sybron Chemicals, Inc., Salem, VA 24153

B. D. Eardly
Assistant Professor of Biology, Pennsylvania State University, Berks Campus, Reading, PA 19610

Mary K. Firestone
Professor of Soil Microbial Ecology, Department of Soil Science, University of California, 108 Hilgard Hall, Berkeley, CA 94720

Dennis D. Focht
Professor of Soil Microbiology, Department of Soil and Environmental Sciences, University of California, Riverside, CA 92521
Jeffry J. Fuhrmann
Associate Professor of Soil Microbiology, Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19717-1303

William C. Ghiorse
Professor and Chairman, Section of Microbiology, Division of Biological Sciences, Cornell University, Ithaca, NY 14853

Peter H. Graham
Professor, Department of Soil Science, University of Minnesota, St. Paul, MN 55108

Charles Hagedorn
Professor of Soil Microbiology, Department of Crop and Soil Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0404

Stephen C. Hart
Assistant Professor, School of Forestry, Northern Arizona University, P.O. Box 15018, Flagstaff, AZ 86011-15018

R. D. Hauck
Senior Scientist, Tennessee Valley Authority, NFE-IA, Muscle Shoals, AL 35660

William E. Holben
Research Assistant Professor, Center for Microbial Ecology and Department of Crop and Soil Sciences, Michigan State University, East Lansing, MI 48824. Currently Research Scientist, Environmental Microbiology, The Agouron Institute, La Jolla, CA 92037-4696; Email bholben@vaxkiller.agr.org.

W. R. Horwath
Faculty Research Associate, 3450 S.W. Campus Way, Crop and Soil Science Department, Oregon State University, Corvallis, OR 97331

Elaine R. Ingham
Associate Professor of Soil Ecology, Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331-2902

Russell E. Ingham
Associate Professor, Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331-2902

Heinrich F. Kaspar
Cawthron Institute, P.O. Box 175, Nelson, New Zealand

A. C. Kennedy
Soil Scientist, USDA-ARS, Washington State University, Pullman, WA 99164-6421

Leif Klemetsson
Ph.D., Swedish Environmental Research Institute (IVL), Gothenburg, Sweden

Roger Knowles
Professor of Microbiology, McGill University, Macdonald Campus, Ste. Anne de Bellevue, PQ H9X, Canada

J. O. Legg
Adjunct Professor, Agronomy Department, University of Arkansas, Fayetteville, AR 72701

K. J. McInnes
Assistant Professor of Environmental Physics, Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843-2474
J. J. Meisinger
Soil Scientist, USDA-ARS, BARC-West, Beltsville, MD 20705

F. Blaine Metting, Jr.
Senior Program Manager, Battelle, Pacific Northwest Laboratories, Richland, WA 99352

Andrew R. Moldenke
Research Professor of Entomology, Oregon State University, Corvallis, OR 97331

A. R. Mosier
Research Chemist, USDA-ARS, Fort Collins, CO 80522

R. L. Mulvaney
Professor, Department of Agronomy, University of Illinois, Urbana, IL 61801

David D. Myrold
Associate Professor, Department of Crop and Soil Sciences, Oregon State University, Corvallis, OR 97331-7306

A. V. Ogram
Assistant Professor of Soils, Department of Crop and Soil Science, Washington State University, Pullman, WA 99164-6420

Timothy B. Parkin
Research Microbiologist, USDA-ARS, National Soil Tilth Laboratory, Ames, IA 50011

Dennis Parkinson
Professor, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada T2N 1N4

E. A. Paul
Professor, Crop and Soil Sciences, Michigan State University, East Lansing, MI 48824

Ian L. Pepper
Professor of Environmental Microbiology, Department of Soil and Water Science, University of Arizona, Tucson, AZ 85721

Suresh D. Pillai
Assistant Professor of Environmental Microbiology, Texas A&M University Research Center, El Paso, TX 79927

Joseph A. Robinson
Associate Director of Biostatistics and Environmental Research, The Upjohn Company, Kalamazoo, MI 49001

M. J. Sadowsky
Associate Professor of Soil Science and Microbiology, Soil Science Department, University of Minnesota, St. Paul, MN 55108

M. J. Savage
Professor of Agrometeorology, Department of Agronomy, University of Natal, Pietermaritzburg 3201, Republic of South Africa

Edwin L. Schmidt
Professor Emeritus of Soil Science, Department of Soil Science, University of Minnesota, St. Paul, MN 55108

Dipankar Sen
Research Scientist, Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843

Horace D. Skipper
Professor, Department of Agronomy and Soils, Clemson University, Clemson, SC 29634-0359
CONTRIBUTORS

T. E. Staley
Research Microbiologist, USDA-ARS, NAA, ASWCRL, Beckley, WV 25813

John M. Stark
Assistant Professor of Microbial Ecology, Department of Biology and the Ecology Center, Utah State University, Logan, UT 84322-5500

David M. Sylvia
Professor of Soil Microbiology, Soil and Water Science Department, University of Florida, Gainesville, FL 32611-0290

M. A. Tabatabai
Professor of Soil Biochemistry, Department of Agronomy, Iowa State University, Ames, IA 50011

James M. Tiedje
University Distinguished Professor, Center for Microbial Ecology, Michigan State University, East Lansing, MI 48824-1325

I. K. Toth
Research Fellow, Biological Sciences, University of Warwick, Coventry, CV4 7AL U.K.

Ronald F. Turco
Professor, Department of Agronomy, 1150 Lilly Hall of Life Sciences, Purdue University, West Lafayette, IN 47907-1150

R. W. Weaver
Professor of Soil Microbiology, Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843-2474

E. M. H. Wellington
Senior Lecturer, Department of Biological Sciences, University of Warwick, Coventry CV4 7AL U.K.

Duane C. Wolf
Professor, Department of Agronomy, University of Arkansas, Fayetteville, AR 72701

A. G. Wollum, II
Professor of Soil Microbiology, Department of Soil Science, North Carolina State University, Raleigh, NC 27695-7619

Paul L. Woomer
Programme Officer, Tropical Soil Biology and Fertility Programme, P.O. Box 30592, Nairobi, Kenya

S. F. Wright
Research Scientist, USDA-ARS, Soil Microbial Systems Laboratory, BARC-East, Beltsville, MD 20705

L. M. Zibilske
Associate Professor of Soil Microbiology, Department of Plant, Soil and Environmental Sciences, University of Maine, Orono, ME 04469-5722

David A. Zuberer
Professor of Soil Microbiology, Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843-2474
Conversion Factors for SI and non-SI Units
Conversion Factors for SI and non-SI Units

<table>
<thead>
<tr>
<th>To convert Column 1 into Column 2, multiply by</th>
<th>Column 1 SI Unit</th>
<th>Column 2 non-SI Unit</th>
<th>To convert Column 2 into Column 1, multiply by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.621</td>
<td>kilometer, km (10^3 m)</td>
<td>mile, mi</td>
<td>1.609</td>
</tr>
<tr>
<td>1.094</td>
<td>meter, m</td>
<td>yard, yd</td>
<td>0.914</td>
</tr>
<tr>
<td>3.28</td>
<td>meter, m</td>
<td>foot, ft</td>
<td>0.304</td>
</tr>
<tr>
<td>3.94 × 10^-2</td>
<td>micrometer, μm (10^-6 m)</td>
<td>micron, μ</td>
<td>1.0</td>
</tr>
<tr>
<td>10</td>
<td>millimeter, mm (10^-3 m)</td>
<td>inch, in</td>
<td>25.4</td>
</tr>
<tr>
<td>9.14 × 10^-9</td>
<td>nanometer, nm (10^-9 m)</td>
<td>Angstrom, Å</td>
<td>0.1</td>
</tr>
<tr>
<td>Area</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.47</td>
<td>hectare, ha</td>
<td>acre</td>
<td>0.405</td>
</tr>
<tr>
<td>247</td>
<td>square kilometer, km^2 (10^3 m)^2</td>
<td>acre</td>
<td>4.05 × 10^-3</td>
</tr>
<tr>
<td>0.386</td>
<td>square kilometer, km^2 (10^3 m)^2</td>
<td>square mile, mi^2</td>
<td>2.590</td>
</tr>
<tr>
<td>2.47 × 10^-4</td>
<td>square meter, m^2</td>
<td>acre</td>
<td>4.05 × 10^3</td>
</tr>
<tr>
<td>10.76</td>
<td>square meter, m^2</td>
<td>square foot, ft^2</td>
<td>9.29 × 10^-2</td>
</tr>
<tr>
<td>1.55 × 10^-3</td>
<td>square millimeter, mm^2 (10^-3 m)^2</td>
<td>square inch, in^2</td>
<td>645</td>
</tr>
<tr>
<td>Volume</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.73 × 10^-3</td>
<td>cubic meter, m^3</td>
<td>acre-inch</td>
<td>102.8</td>
</tr>
<tr>
<td>35.3</td>
<td>cubic meter, m^3</td>
<td>cubic foot, ft^3</td>
<td>2.83 × 10^-2</td>
</tr>
<tr>
<td>6.10 × 10^4</td>
<td>cubic meter, m^3</td>
<td>cubic inch, in^3</td>
<td>1.64 × 10^-5</td>
</tr>
<tr>
<td>2.84 × 10^-2</td>
<td>liter, L (10^-3 m^3)</td>
<td>bushel, bu</td>
<td>35.24</td>
</tr>
<tr>
<td>1.057</td>
<td>liter, L (10^-3 m^3)</td>
<td>quart (liquid), qt</td>
<td>0.946</td>
</tr>
<tr>
<td>3.53 × 10^-2</td>
<td>liter, L (10^-3 m^3)</td>
<td>cubic foot, ft^3</td>
<td>28.3</td>
</tr>
<tr>
<td>0.265</td>
<td>liter, L (10^-3 m^3)</td>
<td>gallon</td>
<td>3.78</td>
</tr>
<tr>
<td>33.78</td>
<td>liter, L (10^-3 m^3)</td>
<td>ounce (fluid), oz</td>
<td>2.96 × 10^-2</td>
</tr>
<tr>
<td>2.11</td>
<td>liter, L (10^-3 m^3)</td>
<td>pint (fluid), pt</td>
<td>0.473</td>
</tr>
</tbody>
</table>
Mass

<table>
<thead>
<tr>
<th>Value</th>
<th>Unit Description</th>
<th>Value</th>
<th>Unit Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.20×10^{-3}</td>
<td>gram, g (10^{-3} kg)</td>
<td>454</td>
<td>pound, lb</td>
</tr>
<tr>
<td>3.52×10^{-2}</td>
<td>gram, g (10^{-3} kg)</td>
<td>28.4</td>
<td>ounce (avdp), oz</td>
</tr>
<tr>
<td>2.205</td>
<td>kilogram, kg</td>
<td>0.454</td>
<td>pound, lb</td>
</tr>
<tr>
<td>0.01</td>
<td>kilogram, kg</td>
<td>100</td>
<td>quintal (metric), q</td>
</tr>
<tr>
<td>1.10×10^{-3}</td>
<td>kilogram, kg</td>
<td>907</td>
<td>ton (2000 lb), ton</td>
</tr>
<tr>
<td>1.102</td>
<td>megagram, Mg (tonne)</td>
<td>0.907</td>
<td>ton (U.S.), ton</td>
</tr>
<tr>
<td>1.102</td>
<td>tonne, t</td>
<td>0.907</td>
<td>ton (U.S.), ton</td>
</tr>
</tbody>
</table>

Yield and Rate

<table>
<thead>
<tr>
<th>Value</th>
<th>Unit Description</th>
<th>Value</th>
<th>Unit Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.893</td>
<td>kilogram per hectare, kg \ ha^{-1}</td>
<td>1.12</td>
<td>pound per acre, lb \ acre^{-1}</td>
</tr>
<tr>
<td>7.77×10^{-2}</td>
<td>kilogram per cubic meter, kg \ m^{-3}</td>
<td>12.87</td>
<td>pound per bushel, lb \ bu^{-1}</td>
</tr>
<tr>
<td>1.49×10^{-2}</td>
<td>kilogram per hectare, kg \ ha^{-1}</td>
<td>67.19</td>
<td>bushel per acre, 60 lb</td>
</tr>
<tr>
<td>1.59×10^{-2}</td>
<td>kilogram per hectare, kg \ ha^{-1}</td>
<td>62.71</td>
<td>bushel per acre, 56 lb</td>
</tr>
<tr>
<td>1.86×10^{-2}</td>
<td>kilogram per hectare, kg \ ha^{-1}</td>
<td>53.75</td>
<td>bushel per acre, 48 lb</td>
</tr>
<tr>
<td>0.107</td>
<td>liter per hectare, $L \text{ ha}^{-1}$</td>
<td>9.35</td>
<td>gallon per acre</td>
</tr>
<tr>
<td>893</td>
<td>tonnes per hectare, $t \text{ ha}^{-1}$</td>
<td>1.2×10^{-3}</td>
<td>pound per acre, lb \ acre^{-1}</td>
</tr>
<tr>
<td>893</td>
<td>megagram per hectare, Mg \ ha^{-1}</td>
<td>1.2×10^{-3}</td>
<td>pound per acre, lb \ acre^{-1}</td>
</tr>
<tr>
<td>0.446</td>
<td>megagram per hectare, Mg \ ha^{-1}</td>
<td>2.24</td>
<td>ton (2000 lb) per acre, ton \ acre^{-1}</td>
</tr>
<tr>
<td>2.24</td>
<td>meter per second, $m \text{ s}^{-1}$</td>
<td>0.447</td>
<td>mile per hour</td>
</tr>
</tbody>
</table>

Specific Surface

<table>
<thead>
<tr>
<th>Value</th>
<th>Unit Description</th>
<th>Value</th>
<th>Unit Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>square meter per kilogram, $m^2 \text{ kg}^{-1}$</td>
<td>0.1</td>
<td>square centimeter per gram, $cm^2 \text{ g}^{-1}$</td>
</tr>
<tr>
<td>1000</td>
<td>square meter per kilogram, $m^2 \text{ kg}^{-1}$</td>
<td>0.001</td>
<td>square millimeter per gram, $mm^2 \text{ g}^{-1}$</td>
</tr>
</tbody>
</table>

Pressure

<table>
<thead>
<tr>
<th>Value</th>
<th>Unit Description</th>
<th>Value</th>
<th>Unit Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.90</td>
<td>megapascal, MPa (10^6 Pa)</td>
<td>0.101</td>
<td>atmosphere</td>
</tr>
<tr>
<td>10</td>
<td>megapascal, MPa (10^6 Pa)</td>
<td>0.1</td>
<td>bar</td>
</tr>
<tr>
<td>1.00</td>
<td>megagram per cubic meter, Mg \ m^{-3}</td>
<td>1.00</td>
<td>gram per cubic centimeter, $g \text{ cm}^{-3}$</td>
</tr>
<tr>
<td>2.09×10^{-2}</td>
<td>pascal, Pa</td>
<td>47.9</td>
<td>pound per square foot, lb \ ft^{-2}</td>
</tr>
<tr>
<td>1.45×10^{-4}</td>
<td>pascal, Pa</td>
<td>6.90×10^3</td>
<td>pound per square inch, lb \ in^{-2}</td>
</tr>
</tbody>
</table>

(continued on next page)
Conversion Factors for SI and non-SI Units

<table>
<thead>
<tr>
<th>To convert Column 1 into Column 2, multiply by</th>
<th>Column 1 SI Unit</th>
<th>Column 2 non-SI Unit</th>
<th>To convert Column 2 into Column 1, multiply by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.00 (K – 273)</td>
<td>Kelvin, K</td>
<td>Celsius, °C</td>
<td>1.00 (°C + 273)</td>
</tr>
<tr>
<td>(9/5 °C) + 32</td>
<td>Celsius, °C</td>
<td>Fahrenheit, °F</td>
<td>5/9 (°F – 32)</td>
</tr>
<tr>
<td>Energy, Work, Quantity of Heat</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.52 × 10⁻⁴</td>
<td>joule, J</td>
<td>British thermal unit, Btu</td>
<td>1.05 × 10³</td>
</tr>
<tr>
<td>0.239</td>
<td>joule, J</td>
<td>calorie, cal</td>
<td>4.19</td>
</tr>
<tr>
<td>10⁻⁷</td>
<td>joule, J</td>
<td>erg</td>
<td>10⁻⁷</td>
</tr>
<tr>
<td>0.735</td>
<td>joule, J</td>
<td>foot-pound</td>
<td>1.36</td>
</tr>
<tr>
<td>2.387 × 10⁻⁵</td>
<td>joule per square meter, J m⁻²</td>
<td>calorie per square centimeter (langley)</td>
<td>4.19 × 10⁴</td>
</tr>
<tr>
<td>10⁻⁵</td>
<td>newton, N</td>
<td>dyne</td>
<td>10⁻⁵</td>
</tr>
<tr>
<td>1.43 × 10⁻³</td>
<td>watt per square meter, W m⁻²</td>
<td>calorie per square centimeter minute (irradiance), cal cm⁻² min⁻¹</td>
<td>698</td>
</tr>
<tr>
<td>Transpiration and Photosynthesis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.60 × 10⁻²</td>
<td>milligram per square meter second, mg m⁻² s⁻¹</td>
<td>gram per square decimeter hour, g dm⁻² h⁻¹</td>
<td>27.8</td>
</tr>
<tr>
<td>5.56 × 10⁻³</td>
<td>milligram (H₂O) per square meter second, mg m⁻² s⁻¹</td>
<td>micromole (H₂O) per square centimeter second, µmol cm⁻² s⁻¹</td>
<td>180</td>
</tr>
<tr>
<td>10⁻⁴</td>
<td>milligram per square meter second, mg m⁻² s⁻¹</td>
<td>milligram per square centimeter second, mg cm⁻² s⁻¹</td>
<td>10⁴</td>
</tr>
<tr>
<td>35.97</td>
<td>milligram per square meter second, mg m⁻² s⁻¹</td>
<td>milligram per square decimeter hour, mg dm⁻² h⁻¹</td>
<td>2.78 × 10⁻²</td>
</tr>
<tr>
<td>Plane Angle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>57.3</td>
<td>radian, rad</td>
<td>degrees (angle), °</td>
<td>1.75 × 10⁻²</td>
</tr>
</tbody>
</table>
Electrical Conductivity, Electricity, and Magnetism

<table>
<thead>
<tr>
<th></th>
<th>SI Unit</th>
<th>Equivalent Unit</th>
<th>Conversion Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>siemen per meter, S m⁻¹</td>
<td>millimho per centimeter, mmho cm⁻¹</td>
<td>0.1</td>
</tr>
<tr>
<td>10⁴</td>
<td>tesla, T</td>
<td>gauss, G</td>
<td>10⁻⁴</td>
</tr>
</tbody>
</table>

Water Measurement

<table>
<thead>
<tr>
<th></th>
<th>SI Unit</th>
<th>Equivalent Unit</th>
<th>Conversion Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.73 x 10⁻³</td>
<td>cubic meter, m³</td>
<td>acre-in</td>
<td>102.8</td>
</tr>
<tr>
<td>9.81 x 10⁻³</td>
<td>cubic meter per hour, m³ h⁻¹</td>
<td>cubic feet per second, ft³ s⁻¹</td>
<td>101.9</td>
</tr>
<tr>
<td>4.40</td>
<td>hectare-meters, ha-m</td>
<td>U.S. gallons per minute, gal min⁻¹</td>
<td>0.227</td>
</tr>
<tr>
<td>8.11</td>
<td>hectare-meters, ha-m</td>
<td>acre-feet, acre-ft</td>
<td>0.123</td>
</tr>
<tr>
<td>97.28</td>
<td>hectare-meters, ha-m</td>
<td>acre-feet, acre-ft</td>
<td>1.03 x 10⁻²</td>
</tr>
<tr>
<td>8.1 x 10⁻²</td>
<td>hectare-centimeters, ha-cm</td>
<td>acre-feet, acre-ft</td>
<td>12.33</td>
</tr>
</tbody>
</table>

Concentrations

<table>
<thead>
<tr>
<th></th>
<th>SI Unit</th>
<th>Equivalent Unit</th>
<th>Conversion Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>centimole per kilogram, cmol kg⁻¹</td>
<td>milliequivalents per 100 grams, meq</td>
<td>1</td>
</tr>
<tr>
<td>0.1</td>
<td>gram per kilogram, g kg⁻¹</td>
<td>percent, %</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>milligram per kilogram, mg kg⁻¹</td>
<td>parts per million, ppm</td>
<td>1</td>
</tr>
</tbody>
</table>

Radioactivity

<table>
<thead>
<tr>
<th></th>
<th>SI Unit</th>
<th>Equivalent Unit</th>
<th>Conversion Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.7 x 10⁻¹¹</td>
<td>becquerel, Bq</td>
<td>curie, Ci</td>
<td>3.7 x 10¹⁰</td>
</tr>
<tr>
<td>2.7 x 10⁻²</td>
<td>becquerel per kilogram, Bq kg⁻¹</td>
<td>picocurie per gram, pCi g⁻¹</td>
<td>37</td>
</tr>
<tr>
<td>100</td>
<td>gray, Gy (absorbed dose)</td>
<td>rad, rd</td>
<td>0.01</td>
</tr>
<tr>
<td>100</td>
<td>sievert, Sv (equivalent dose)</td>
<td>rem (roentgen equivalent man)</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Plant Nutrient Conversion

Elemental

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Oxide</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>2.29</td>
<td>P₂O₅</td>
</tr>
<tr>
<td>K</td>
<td>1.20</td>
<td>K₂O</td>
</tr>
<tr>
<td>Ca</td>
<td>1.39</td>
<td>CaO</td>
</tr>
<tr>
<td>Mg</td>
<td>1.66</td>
<td>MgO</td>
</tr>
</tbody>
</table>