REGISTRATION OF WIRTH AND RAMPAGE SOYBEANS

(Reg. Nos. 79 and 80)

C. R. Weber and W. R. Fehr

'Wirth' (Reg. No. 79) and 'Rampage' (Reg. No. 80) soybeans (Glycine max (L.) Merrill) each originated as single F2 plant selections from the cross 'Clark' × 'Chippewa.' Hybridization, selection, and development of Wirth and Rampage were done at the Iowa Agricultural and Home Economics Experiment Station in cooperation with the U.S. Regional Soybean Laboratory, U. S. Department of Agriculture. Before release Wirth and Rampage were designated A2-5407 and A2-5405, respectively.

Wirth and Rampage were evaluated in Uniform Regional Tests beginning in 1964 by the Crops Research Division, and cooperating agricultural experiment stations in Illinois, Indiana, Iowa, Michigan, Minnesota, Nebraska, Ohio, South Dakota, Wisconsin, and Ontario, Canada. They were increased and released in Illinois, Indiana, Iowa, Michigan, Minnesota, Ohio, South Dakota, Wisconsin, and Ontario, Canada. They were increased and released in the summer of 1967 in Illinois, Iowa, Michigan, Minnesota, Missouri, Nebraska, New Jersey, Ohio, South Dakota, Wisconsin, and Ontario, Canada. They were increased and released in 1969 in Illinois, Iowa, Michigan, Minnesota, New York, Ohio, South Dakota, Wisconsin, and Ontario, Canada. They were increased and released in 1970 by the Minnesota, South Dakota, Wisconsin Agricultural Experiment Stations.

Wirth and Rampage are of group I maturity and best adapted to approximately 42° to 45° N latitude. Wirth is similar to 'Chippewa 64.' Rampage yields about 15% more than varieties of similar maturity. It is similar in maturity to 'Harosoy 63' and 'Lindarin 63' but is 2 days later than 'Harosoy.' Rampage's plant height, lodging resistance, protein content, and oil content are similar to those of varieties that it likely will replace. Although Corsoy is susceptible to phytophthora rot, it is considered a replacement for varieties of similar maturity where this disease is not a problem.

Plant and seed appearance of Corsoy are more like the Harosoy parent than Capital. Corsoy has purple flowers, gray pubescence, yellow seed coat with dull luster, yellow hilum, and brown pods. Certified seed of Corsoy may contain 0.5% brown seed coats. Leaves and growth habit are similar to Harosoy.

The Iowa Agricultural Experiment Station will be responsible for maintenance of breeder seed.

Other information on Corsoy has been published in Iowa Farm Science 22:8-9, 1967.

REGISTRATION OF DUNN SOYBEANS

(Reg. No. 82)

J. H. Torrie

'Dunn' soybeans (Glycine max (L.) Merrill) originated as an F2 plant selection from the cross 'Grant' × 'Chippewa.' The Wisconsin Agricultural Experiment Station and the U. S. Regional Soybean Laboratory. Before release, Corsoy was evaluated in Uniform Regional Tests beginning in 1964 by the Crops Research Division, and cooperating agricultural experiment stations in Illinois, Indiana, Iowa, Michigan, Minnesota, Nebraska, New Jersey, Ohio, South Dakota, Wisconsin, and Ontario, Canada. It was increased and released in the summer of 1967 in Illinois, Iowa, Michigan, Minnesota, Nebraska, Ohio, South Dakota, Wisconsin, and Ontario, Canada. It was increased and released in 1970 by the Minnesota, South Dakota, Wisconsin Agricultural Experiment Stations.

Dunn is of group I maturity and adapted to approximately 42° to 45° N latitude. It it similar to 'Chippewa 64' in maturity. In Uniform Regional Tests, it yielded about 4% more than Chippewa 64. Dunn is 1 inch shorter in height and more inclined to lodge than Chippewa 64. For other attributes it is similar to Chippewa 64. Dunn is not resistant to phytophthora root rot.

Dunn has purple flowers, light tawny pubescence, yellow seed coat with a shiny luster, black hilum, and brown pods. Certified seed of Dunn may contain up to 1.5% off-type hilum, principally brown.

The Wisconsin Agricultural Experiment Station will be responsible for maintenance of breeder seed.

Other information on Dunn was published by E. A. Brickbauer and J. H. Torrie.

1 Registered by the Crop Science Society of America. Published with the approval of the Iowa Agricultural and Home Economics Experiment Station, Ames, Iowa, 50010, as Journal Paper No. J-6489, Project No. 1179, and the Crops Research Division, Agricultural Research Service, U. S. Department of Agriculture, as No. 624 of the U. S. Regional Soybean Laboratory, Received June 2, 1970.

2 Vice President and Director of Research, Peterson Seed Company, Waterloo, Iowa, and Savage, Minnesota; (formerly Research Agronomist, Crops Research Division, Agricultural Research Service, U. S. Department of Agriculture, and Associate Professor of Agronomy, Iowa State University, and Associate Professor of Agronomy, Iowa State University and Collaborator, Crops Research Division, Agricultural Research Service, U. S. Department of Agriculture, respectively.

REGISTRATION OF CORSOY SOYBEANS

(Reg. No. 81)

C. R. Weber and W. R. Fehr

'Corsoy' soybeans (Glycine max (L.) Merrill) originated as an F1 plant selection from the cross 'Harosoy' × 'Capital.' Hybridization, selection, and development of Corsoy were done at the Iowa Agricultural and Home Economics Experiment Station in cooperation with the U. S. Regional Soybean Laboratory, U. S. Department of Agriculture. Before release, Corsoy was designated A1-439. Selection A8-932 was the progenitor of A1-439.

Corsoy was evaluated in Uniform Regional Tests beginning in 1965 by the Crops Research Division and cooperating agricultural experiment stations in California, Illinois, Indiana, Iowa, Michigan, Minnesota, Missouri, Nebraska, New Jersey, Ohio, South Dakota, Wisconsin, and Ontario, Canada. It was increased and released in the summer of 1967 in Illinois, Iowa, Michigan, Minnesota, Nebraska, Ohio, South Dakota, Wisconsin, and Ontario, Canada. It was increased and released in 1970 by the Minnesota, South Dakota, Wisconsin Agricultural Experiment Stations.

Corsoy is of group II maturity and is best adapted to approximately 42° to 44° N latitude. In Uniform Regional Tests, it yielded higher than any variety in its maturity class in the soybean belt. In Iowa, it yielded 15% more than varieties of similar maturity. It is similar in maturity to 'Harosoy 63' and 'Lindarin 63' but is 2 days later than 'Harosoy.' Corsoy's plant height, lodging resistance, protein content, and oil content are similar to those of varieties that it likely will replace. Although Corsoy is susceptible to phytophthora rot, it is considered a replacement for varieties of similar maturity where this disease is not a problem.

Plant and seed appearance of Corsoy are more like the Harosoy parent than Capital. Corsoy has purple flowers, gray pubescence, yellow seed coat with dull luster, yellow hilum, and brown pods. Certified seed of Corsoy may contain 0.5% brown seed coats. Leaves and growth habit are similar to Harosoy.

The Iowa Agricultural Experiment Station will be responsible for maintenance of breeder seed.

Other information on Corsoy has been published in Iowa Farm Science 22:8-9, 1967.

1 Registered by the Crop Science Society of America. Published with the approval of the Iowa Agricultural and Home Economics Experiment Station, Ames, Iowa, 50010, as Journal Paper No. J-6489, Project No. 1179, and the Crops Research Division, Agricultural Research Service, U. S. Department of Agriculture, as No. 624 of the U. S. Regional Soybean Laboratory, Received June 2, 1970.

2 Vice President and Director of Research, Peterson Seed Company, Waterloo, Iowa, and Savage, Minnesota; (formerly Research Agronomist, Crops Research Division, Agricultural Research Service, U. S. Department of Agriculture, and Associate Professor of Agronomy, Iowa State University, and Associate Professor of Agronomy, Iowa State University and Collaborator, Crops Research Division, Agricultural Research Service, U. S. Department of Agriculture, respectively.