Morpa has been equal to or higher yielding than other weeping lovegrass strains in forage yield tests at Manghum, Perkins, and Woodward, Oklahoma. Morpa is equal to common weeping lovegrass in seed production, is slightly less winterhardy, but has better forage characteristics. Its principal area of utilization will be most of Oklahoma, excluding the Panhandle.

Seed production of Morpa will be limited to two generations of decrease from the female parent population, each one of foundation and certified seed. Breeder and foundation seed are produced under the direction of the Oklahoma Agricultural Experiment Station.

Morpa weeping lovegrass was favorably reviewed by the National Certified Grass Variety Review Board at its December 1969 meeting.

REGISTRATION OF GEORGIA 119-20 PEANUTS

Ray O. Hammons

'Georgia 119-20' (Arachis hypogaea L.) is a large-seeded Virginia type peanut, with bunch growth habit, developed through hybridization of three varieties having the spreading habit of growth. The first cross, 'Southeastern Runner' × 'Dixie Giant,' segregated one-fourth bunch plants. An F1 bunch selection was crossed with a jumbo-podded strain of 'Virginia Runner,' and bunch selection 119-20 was chosen as being the most suitable in Georgia. The variety was first certified in Georgia in 1964. The plants are vigorous and densely branched. Pods cluster near the base of the plant, mature rather uniformly and have a fairly thick shell. Under favorable growing conditions Georgia 119-20 will grade 80 to 90%, "Fancy" pods. The seed are large.

REGISTRATION OF WINTER BARLEY COMPOSITE CROSSES

David A. Reid, N. F. Jensen, R. T. Ramage, and R. K. Thompson

Two winter barley (Hordeum vulgare L.) composite crosses, C.C. XXVI and C.C. XXVII, were planned to produce diverse gene pools in a winter habit background similar to Composite Cross XXVI developed by Suneson and Wiebe. Seed of the new winter barley composite crosses have been distributed to 56 breeders in the United States and to 34 breeders in other countries.

C.C. XXVI (Reg. No. GP 10). The female parent consisted of over 70 winter-habit lines to which the genetic recessive male-sterile gene (ms ms) had been transferred by backcrossing. The recurrent parents were chosen for known adaptation to various winter barley regions of the United States and on the basis of their potential for winterhardiness, disease and insect resistance, or other agronomic characters. Individual recurrent parents were chosen and subsequent male-sterile stocks have been released.1 The male parent consisted of a bulk of approximately equal numbers of male-seed from breeder seed, named, one each of foundation and certified seed. Breeder and foundation seed are produced under the direction of the Oklahoma Agricultural Experiment Station.

The hybrid was made under irrigation at Tucson, Arizona, in 1963. At this location there is sufficient vernalization for heading in winter barrels and the less hardy types also survive the winter; abundant tillering generally results from fall seeding; natural long and cylindrical, grading from 40 to 60%, "extra large." Additional descriptive and performance data have been published (1).

Georgia 119-20 was grown on a substantial portion of the acreage of commercial Virginia type peanuts in Georgia during the late 1950's but was replaced by higher-yielding varieties when acreage of commercial Virginias expanded rapidly in the 1960's. Georgia 119-20 was grown to a moderate extent in Virginia and North Carolina in the early and middle 1960's, where it was prized by shellers and end-use processors because of its attractive pods and seed and excellent roasting-in-shell attributes. When shellers failed to pay a premium for such qualities, growers turned to other varieties that were more profitable for them.

Inoculation trials with three isolates of Pseudomonas solanacearum E. F. Sm. indicated the lowest relative susceptibility of Georgia 119-20 to bacterial wilt disease among commercial peanut varieties grown in Georgia (2). However, resistance of Georgia 119-20 was less for one isolate than that of the Indonesian variety 'Schwarz 21.' Bacterial wilt of peanuts is of little cultural importance in the United States.

Georgia 119-20 was introduced into Senegal by the Institut de Recherches pour les Huiles et Oleagineux (I.R.H.O.), where extensive trials during 1958-68, proved it to have high-yielding ability and good market qualities and to be well-adapted for culture in the Sine Saloum area. In 1968, 2,500 ha were grown for the edible market by the I.R.H.O. at a price premium of 85% over peanuts grown for oil extraction (3). The area under cultivation with Georgia 119-20 in Senegal in 1970 was about 6,000 ha, with about 4,000 ha grown in this in controlled multiplication of seed (4).

The successful introduction and commercial development of this variety in Senegal breaks the hold of single-crop growing of oil mill peanuts in the Sine Saloum area and provides substantial additional income to growers (5).

Seed is available to plant breeders in quantity of 250 g from the Department of Agronomy, Georgia Coastal Plain Experiment Station, Tifton, Georgia 31794.

References


Registration of Germplasm

2 Registered by the Crop Science Society of America. Supported cooperatively by the Crops Research Division, Agricultural Research Service, U.S. Department of Agriculture, and Research Associate in Genetics, University of Georgia College of Agriculture, Coastal Plain Station, Tifton, Georgia 31794.

2 Registered by the Crop Science Society of America. Received Nov. 27, 1970. Crops Research Division, Agricultural Research Service, U.S. Department of Agriculture and the New York (Cornell) and Arizona Agricultural Experiment Stations, cooperating. Contribution No. 1706 of the Arizona Agricultural Experiment Station.
3 Ray O. Hammons, 2 Professor of Plant Breeding, Cornell University, Ithaca, New York 14850; Geneticist, Crops Research Division, Agronomy devoted to Virginia type peanuts in Georgia during the late 1950's but was replaced by higher-yielding varieties when acreage of commercial Virginias expanded rapidly in the 1960's. Georgia 119-20 was grown to a moderate extent in Virginia and North Carolina in the early and middle 1960's, where it was prized by shellers and end-use processors because of its attractive pods and seed and excellent roasting-in-shell attributes. When shellers failed to pay a premium for such qualities, growers turned to other varieties that were more profitable for them.

Inoculation trials with three isolates of Pseudomonas solanacearum E. F. Sm. indicated the lowest relative susceptibility of Georgia 119-20 to bacterial wilt disease among commercial peanut varieties grown in Georgia (2). However, resistance of Georgia 119-20 was less for one isolate than that of the Indonesian variety 'Schwarz 21.' Bacterial wilt of peanuts is of little cultural importance in the United States.

Georgia 119-20 was introduced into Senegal by the Institut de Recherches pour les Huiles et Oleagineux (I.R.H.O.), where extensive trials during 1958-68, proved it to have high-yielding ability and good market qualities and to be well-adapted for culture in the Sine Saloum area. In 1968, 2,500 ha were grown for the edible market by the I.R.H.O. at a price premium of 85% over peanuts grown for oil extraction (3). The area under cultivation with Georgia 119-20 in Senegal in 1970 was about 6,000 ha, with about 4,000 ha grown in this in controlled multiplication of seed (4).

The successful introduction and commercial development of this variety in Senegal breaks the hold of single-crop growing of oil mill peanuts in the Sine Saloum area and provides substantial additional income to growers (5).

Seed is available to plant breeders in quantity of 250 g from the Department of Agronomy, Georgia Coastal Plain Experiment Station, Tifton, Georgia 31794.

References