REGISTRATION OF SPANTEX PEANUT¹
(Reg. No. 15)
C. E. Simpson²

'SPANTEX' (Arachis hypogaea L.) is a typical Spanish peanut with flesh colored tests, small seed (3,030/kg) and pods, distinctive pod reticulations, two seed per pod, no appreciable seed dormancy, upright plant growth, and 1.2 flowering on the main stem. The plants produced in 115 to 125 days, depending upon moisture and temperature conditions. Spantex has no known resistance to any disease or insect pests commonly known to attack peanuts.

The shells of Spantex are relatively thin (but slightly thicker than the old 'common Spanish'), which generally results in a high turn-out of kernels. Pod constriction between the two seed is moderate with the two seed rarely touching at maturity. Spantex originated from a single plant selection made at the Plant Disease Laboratory of the Texas Agricultural Experiment Station (TAES) at Stockdale, Texas, in 1939 or 1940. Shortly before the laboratory was closed in 1945, the selection was given to a grower who maintained the line for several years. Subsequently, personnel of the West Cross Timbers Experiment Station, Stephenville, Texas, made mass selections of plants of the predominant type and initiated performance trials at TAES, Stephenville, in 1945. The selection proved to be at least 10 percent higher yielding and was earlier than common Spanish. The line was named Spantex and released in 1948.

Breeder seed of Spantex is maintained at the Texas A&M University-Tarleton Experiment Station, Stephenville, Texas 76401.

¹Registered by the Crop Science Society of America. Texas A&M University-Texas Agricultural Experiment Station publication, TA No. 9452. Received Feb. 24, 1972.
²Assistant Professor, Texas A&M University-Tarleton Experiment Station, Stephenville, Texas 76401. Written in collaboration with B. C. Langley.

REGISTRATION OF STARR PEANUT¹
(Reg. No. 16)
C. E. Simpson²

The 'STARR' peanut (Arachis hypogaea L.) is a Spanish type with flesh colored tests, medium sized seed (2,680/kg) and pods and too appreciable seed dormancy. Starr generally has two seed per pod with a large percentage of the pods produced at the base of the plants. Peg attachments to the pods are somewhat weaker than those of other varieties. Pod constriction is moderate. But generally less than 'Spanish', with the pods having two seed touching at maturity. The shells are considerably thicker than those of Spantex, usually resulting in a lower turn-out of kernels.

Starr has an upright growth habit and all plants flower on the main stem. The plants are more vigorous and stems are thicker than those of Spantex. The maturity range is 115 to 130 days but may be longer during cooler wet growing conditions or under heavy irrigation and fertilization.

Starr exhibits no resistance to common peanut diseases and insect pests. Quality determinations made at the time of release showed an average of 50.5% oil, 33.2% protein and iodine values of 95.7.

Starr was selected from the progeny of the cross Spantex × P.I. 161317. The latter parent was a Spanish-type peanut that was collected at Salto, Uruguay, and introduced into the United States in December 1947. The cross was made in 1949, at the Texas Agricultural Experiment Station, Stephenville, and subse-

¹Registered by the Crop Science Society of America. Texas A&M University-Texas Agricultural Experiment Station publication, TA No. 9453. Received Feb. 24, 1972.
²Assistant Professor, Texas A&M University-Tarleton Experiment Station, Stephenville, Texas 76401. Written in collaboration with B. C. Langley.

REGISTRATION OF MELOLAND GRAIN SORGHUM¹
(Reg. No. 112)
George F. Worker, Jr.²

'MELOLAND' grain sorghum (Sorghum bicolor (L.) Moench) was first released at the Imperial Valley Field Station of the University of California, El Centro, California, from a cross of 'Imperial Kafir' × 'Double Dwarf 38' milo in 1954 and backcrossed to Imperial Kafir the following year. The cultivar was developed from a selfed, single-head selection in 1958 and tested as line IV 591399 beginning in 1959. It was released in 1965.

Meloland averaged from 19 cm (48 in.) in April plantings to 21 cm (53 in.) tall when planted in July (0.5 to 1.0 taller than RS 610 or Double Dwarf 38). The stem is thick, dry, and has few tillers. Leaves are dark green, wide, and there are 15 to 16 per plant at maturity. Panicles (heads) are erect and semi-lax; they vary in size depending on stand and are generally similar to Double Dwarf 38 but shorter than RS 610. Glumes are pubescent (hairy), brown to black in color, and medium-length with awns. Kernels are starchy, brownish-white in color, and thresh freely. Meloland matures 7 to 8 days later than 'RS 610,' a medium-maturing hybrid. It has shown a high degree of resistance to anthracnose in tests at Experiment, Georgia. Meloland is a R line.

Grain yield information on Meloland was obtained from 6 years of testing at the Imperial Valley Field Station and from several tests at other locations in Imperial and Palo Verde Valleys.

In a 4-year comparison Meloland produced 8,954, 6,965, and 7,400 kg/ha when planted in April, May 15, and July 15, respectively. This compares to Double Dwarf 38 production of 7,428, 7,101, and 5,659 kg/ha and RS 610 production of 8,311, 5,384, and 4,009 kg/ha, respectively. In one trial there were only 618 to 921 kg/ha difference between Meloland and the better hybrid yields when planted in April. The largest difference occurred at the July 15 planting when the average yield of five hybrids was 3,214 kg/ha compared to 7,399 kg/ha for Meloland.

Meloland was included in the 1964 Regional Nursery at 28 locations excluding Imperial Valley Field Station. Yields ranged from 9% of RS 610 (8,867 kg/ha) to 150% of RS 610 (4,483 kg/ha), with an average of 77.4% of RS 610 and lower than 618 to 921 kg/ha difference between Meloland and the better hybrid yields when planted in April. The largest difference occurred at the July 15 planting when the average yield of five hybrids was 3,214 kg/ha compared to 7,399 kg/ha for Meloland.


¹Registered by the Crop Science Society of America. Received Feb. 3, 1972.
²Specialist in Agronomy, Imperial Valley Field Station, University of California, El Centro, California 92243.