REGISTRATION OF SLENDERSTEM DIGITGRASS
(Reg. No. 27)

E. M. Hodges and S. C. Schank

'SLENDERSTEM' digitgrass, *Digitaria pentzii* Stent., was released in September 1969 by the Florida Agricultural Experiment Station as a new perennial forage grass.

Vegetative planting material of Slenderstem (experimental designation Leesburg No. 5) used in trials at the University of Florida Agricultural Research Center, Ona, Fla., was obtained from the Agricultural Research Center, Leesburg, Fla. (formerly Watermelon and G rape Investigations Laboratory) in 1953 with no specific record of source of material or plant introduction number. The first listing of this cultivar as *Digitaria* sp. was based on a sample (PI 300935) sent to the USDA New Crops Research Branch, Beltsville, Md. from Ona in 1959.

Additional biosystematic work in 1969 classified Slenderstem as *D. pentzii*. We have also compared Slenderstem with specimens of *Digitaria* in the herbarium of the Institute of Food and Agricultural Sciences, University of Florida, Gainesville. It most closely resembles a specimen labelled *Digitaria seriata* received as Kuruman PI 106657. Kuruman had been in forage trails at Gainesville and was probably among approximately 70 grasses transferred to Leesburg in 1950 for further evaluation. Since neither Slenderstem nor the Kuruman strain have a branched rhizome with serially arranged culms, as described for *D. seriata*, the *D. seriata* classification is considered incorrect.

Slenderstem is adapted only to sub-tropical or tropical areas, usually between 30°N and 30°S latitude. Its area of adaptation is similar to that of 'Pangola.' Slenderstem is being evaluated as a forage grass in Guyana, Surinam, Venezuela, Colombia, Puerto Rico, and El Salvador.

The numerous stolons are similar to Pangola in prostrate growth habit and production of roots at each node. Slenderstem can be distinguished from Pangola by the presence of only four spike-like racemes making up the inflorescence, by longer internode length, and by the smaller stem diameter that gives the cultivar its name. In addition, the leaf blade of Slenderstem has minute soft hairs on both surfaces and a more delicate ligule than Pangola. The tetraploid Slenderstem (2n = 36) produces some viable seed.

The forage production of Slenderstem was 35% more than Pangola and 43% higher than 'Pensacola' bahiagrass in the period of the year from October 1 to May 1. The total forage produced by Slenderstem was 10% more per harvest than Pangola and 11% higher than Pensacola. In a 3-year grazing comparison at Ona using yearling steers, average gains were 450 kg/ha/yr on Slenderstem, 499 on Pangola, and 401 on Pensacola.

Breeder stock of Slenderstem is maintained by the Agricultural Research Center, University of Florida, Ona, Fla. 32601.

REGISTRATION OF OXLEY CICER MILKVETCH
(Reg. No. 14)

A. Johnston, S. Smoliak, M. R. Hanna, and D. McCaleb

'Oxley' cicer milkvetch (*Astragalus cicer* L.) was released from the Research Station, Canada Department of Agriculture, Lethbridge, Alberta, and was released and licensed in Canada (license number 1030) on Feb. 4, 1971. Oxley OA-408 was introduced from the U.S.S.R. in 1931 and grown at the Canada Department of Agriculture Research Station, Lethbridge, Alberta in 1945 as L-71. Oxley was identified as Oxley. Seed produced at Manyberries brought to the Canada Department of Agriculture Research Station, Lethbridge, Alberta in 1945 as L-71 were established. Seed from these rows was used in plots in 1950, at the Canada Department of Agriculture Research Station, Stavely, Alberta. Bulked seed 1965 from the Stavely plots was later identified as Oxley. The name Oxley is reminiscent of an early ranch located near the Stavely Research Substation.

Cicer milkvetch is a rhizomatous, perennial grass, not known to induce bloat in livestock. Unlike other species, it does not accumulate high levels of Se. Oxley is a cultivar represented by a tetraploid resulting from chance hybridization of closely related species.

Pangola is a stoloniferous perennial with straight, smooth stems cut at the hay stage and disking into stubble may be grazed after 60 to 90 days if the weather is favorable. It is best adapted between 30°N and 30°S latitude, from sea level to 1,800 m and where annual rainfall is at least 1000 mm.

Average gain by calves grazing Pangola for the year 68 at Ona, Florida was 418 kg/ha/yr compared with 19, 1972. Pangola is generally established vegetatively by broadcasting green stems cut at the hay stage and disking into stubble. It may be grazed after 60 to 90 days if the weather is favorable. It is best adapted between 30°N and 30°S latitude, from sea level to 1,800 m and where annual rainfall is at least 1000 mm.

Pangola is generally established vegetatively by broadcasting green stems cut at the hay stage and disking into stubble. It may be grazed after 60 to 90 days if the weather is favorable. It is best adapted between 30°N and 30°S latitude, from sea level to 1,800 m and where annual rainfall is at least 1000 mm.

Pangola is a stoloniferous perennial with straight, smooth stems cut at the hay stage and disking into stubble. It may be grazed after 60 to 90 days if the weather is favorable. It is best adapted between 30°N and 30°S latitude, from sea level to 1,800 m and where annual rainfall is at least 1000 mm.