and Hercules in test weight. Rolette has a broad range of stem rust resistance and has moderate field resistance to the prevalent races of leaf rust. It appears equal to Leeds and Wells in tolerance to Septoria and Pyrenophora leaf diseases. Rolette compares favorably in quality with the currently grown durum varieties. The protein content and quality, milling performance, and spaghetti firmness are good. The vitreous kernel content of Rolette was slightly lower than that of Leeds in 1 of 3 years. The spaghetti color of Rolette appears variable; however, it averages slightly below Leeds, equal to Wells, and higher than Hercules.

Rolette was named and released by the North Dakota Agricultural Experiment Station and the Plant Science Research Division, Agricultural Research Service, U.S. Department of Agriculture on Dec. 1, 1971. Breeder seed will be maintained by the North Dakota Agricultural Experiment Station, Fargo, N.D. 58102.

Rolette is described further in North Dakota Farm Research 29:3-6. November-December 1971.

REGISTRATION OF SUNDANCE WHEAT

(Reg. No. 516)

M. N. Grant

'SUNDANCE,' CI 15327, a hard red winter wheat (*Triticum aestivum* L. em Thell.), was developed from the cross 'Cheyenne'/Kharkov 22 MC', made in 1953 at the Canada Department of Agriculture Research Station, Lethbridge, Alberta. The line 5520-8 was selected in 1960 from 3,000 individual plant progeny rows, and in subsequent yield trials in western Canada was a consistently high yielder. It was licensed in Saskatchewan in 1970.

Sundance is adapted to the winter-wheat growing areas of southern Alberta and southwestern Saskatchewan. It is winter hardy and higher yielding than 'Winalta' straw and is later in maturity. In 17 tests in Saskatchewan from 1965 to 1970, Sundance averaged 19% higher than Winalta. As the plants approach maturity, the kernels remain green longer and are more resistant to cracking and fraying than those of Winalta. It is resistant to common bunt and some resistance to common bunt, and is susceptible to stem rust.

Breeder seed is maintained at the Research Station, Lethbridge, Alberta.

REFERENCES

2. Registered by the Crop Science Society of America, April 21, 1972.

3. Research Scientist, Canada Department of Agriculture, Research Station, Lethbridge, Alberta.

Registration of Germplasm

REGISTRATION OF KS30 SORGHUM GERMPLASM

(Reg. No. GP 1)

H. L. Hackerott, T. L. Harvey, and W. M. Ross

'KS30 (GP 1)' is a sorghum germplasm source of resistance to the C-biotype greenbug, *Schizaphis graminum* (Rondani), derived from *Sorghum virgatum* (Hack) Stapf. (Texas Agricultural Experiment Station No. 1636) × *S. bicolor* (L.) Moench ('Combine Kafir-60'). Damage to sorghum by greenbugs, a major sorghum pest in the U.S. since 1968, varies from killing seedling stands to extensive losses in grain production (5). Although sorghum is primarily attacked by C-biotype greenbugs (2), KS30 also resists the B-biotype, a pest of small grains (7). KS30 seedlings appeared resistant to corn leaf aphid, *Rhopalosiphum maidis* (Fitch). All sudangrass-type sorghums, including *S. virgatum*, were previously reported highly resistant to corn leaf aphids (6).

KS30 produced the same whether sprayed or unsprayed with insecticides for the control of greenbugs with an infestation which reduced grain yields of a susceptible sorghum 58% in the field (3). KS30's greenbug resistance is largely due to tolerance although other mechanisms of resistance are present (9). Re-