pubescence is slight and present both above and below nodes. The leaf is midwidth with pubescence on sheath and lower leaf margins, and the panicle is equilateral, midlong (18 to 22 cm), and midwidth. The rachis is straight to slightly flexuous, with 6 to 8 nodes and no false node; the 18 to 20 panicle branches are midlong (8 to 9 cm), and usually straight to raised. Glumes are reddish yellow, midlong (22 to 25 mm), and medium coarse in texture; lemmas are grayish red to grayish yellow and midlong (16 to 18 mm), with 7 nerves. Paleas are midwidth and grayish red. There are 18 to 20 spikelets; separation is by fracture. The basal scar is absent or very obscure. Basal pubescence is slight and short. There are 2 to 3 florets; separation is by fracture, usually distal. Awns are few and straight; kernels are plump; the rachilla segment is short (1.5 to 1.7 mm), midwide, and nonpubescent; and the back of lemma is glabrous.

Breeder seed will be maintained by the Research Division, Virginia Polytechnic Institute and State University.

REGISTRATION OF ADA SOYBEANS†
(Reg. No. 101)
J. W. Lambert and B. W. Kennedy‡

‘Ada’ soybeans (Glycine max (L.) Merr.) originated as an F₄ plant selection from the cross ‘Merit’ × ‘Norman’ in a cooperative program of the Minnesota Agricultural Experiment Station and the U.S. Regional Soybean Laboratory. Prior to its release, Ada was identified by the number M61-60. It is classed in Group 00 maturity, maturing on the average of 5 days later than ‘Portage.’ It will probably be most useful for full-season planting on the heavy clay soils of the Red River Valley and for late planting farther south.

Distinguishing characteristics of Ada are white flowers, gray pubescence, shiny seed coats, and yellow hila. The canopy is medium in width and the leaves are medium to light green. The plants of Ada are taller and lodge more than those of Portage. The seeds are similar to Portage in size and are slightly lower in percentage of oil. Ada has yielded 3 to 5% higher than Portage. Ada is resistant to phytophthora rot and to shattering. It has tolerance to high-lime soils and good seedling vigor under cool conditions.

Seed was released to certified growers in Minnesota and North Dakota in 1972. The Minnesota Agricultural Experiment Station will be responsible for maintenance of breeder seed. Other information on Ada is published in “Varietal Trials of Farm Crops,” Miscellaneous Report 24, Agricultural Experiment Station, St. Paul, Minnesota 55101.

† Registered by the Crop Science Society of America. Paper No. 8215, Scientific Journal Series, Minnesota Agricultural Experiment Station. Received May 29, 1973.
‡ Professor of Agronomy and Plant Genetics, and Professor of Plant Pathology, University of Minnesota, St. Paul, Minnesota 55101.

REGISTRATION OF HUTTON SOYBEANS†
(Reg. No. 100)
Kuell HinsonⅠ

Distinguishing characteristics of Hutton are purple flowers, tawny pubescence, tan pod walls, and a determinate growth habit. Seeds weigh about 17.5 g/100, slightly larger than Hampton or Bragg, and have yellow coats predominating. Hutton is resistant to bacterial pustule, white mold, and gray leaf spot. It is similar to Hampton and Bragg in reaction to target spot. It has good seed-holding qualities. Insects and weeds tend to remain green after pods mature.

Regional tests indicate that Hutton yields 5% more than Hampton, and seeds are 7% lower in oil and protein content. Data from root-knot nematode tests in west Florida indicate that Hutton is equal to ‘Blackhawk’ to Meloidogyne incognita and is significantly better than Hampton, ‘Ransom,’ ‘Hood,’ or ‘Davis.’

Hutton was released in 1972 by the U. S. Department of Agriculture, Agricultural Research Service and the Agricultural Experiment Stations of Florida, Georgia, South Carolina, Alabama, and Texas. The Florida Agricultural Experiment Station is responsible for maintaining breeder seed.

REGISTRATION OF JUPITER SOYBEANS†
(Reg. No. 99)
Kuell HinsonⅠ

‘Jupiter’ soybeans (Glycine max (L.) Merr.) originated as an F₄ plant selection from the cross D49-2491 × ‘Bilomi No. 3’ in a cooperative program of the Florida Agricultural Experiment Station and the Agricultural Research Service, U. S. Department of Agriculture. D49-2491 is closely related to ‘Lee.’ Bilomi No. 3 was introduced from the Philippines and is maintained as PI 240064 in the USDA germplasm collection. Before its release, Jupiter was identified by the number F62-3977. It is closely adapted to locations between 0 and 20° latitude.

Distinguishing characteristics of Jupiter are purple flowers, tawny pubescence, brown pod walls, and a determinate growth habit. Seedcoats are dull yellow and dull black coats predominating. Seeds have both brown and black hila. In tests near 6° latitude, Jupiter yielded 27 to 71% more than ‘Portage.’ Variations in flowering date at 29° latitude and at 6° latitude have been observed. Jupiter is resistant to bacterial pustule and to white mold and has a low target spot. It has good seed-holding quality.

In tests near 6° latitude, Jupiter yielded 27 to 71% more than ‘Portage.’ Variations in flowering date at 29° latitude and at 6° latitude have been observed. Jupiter is resistant to bacterial pustule and to white mold and has a low target spot. It has good seed-holding quality.

In tests near 6° latitude, Jupiter yielded 27 to 71% more than ‘Portage.’ Variations in flowering date at 29° latitude and at 6° latitude have been observed. Jupiter is resistant to bacterial pustule and to white mold and has a low target spot. It has good seed-holding quality.

Ⅰ Registered by the Crop Science Society of America. Contribution from the Florida Agricultural Experiment Station. USDA. Journal Series No. 4802 of the Florida Agricultural Experiment Station. Received May 29, 1973.
Ⅱ Research Agronomist, ARS, USDA, and Professor of Agronomy, University of Florida, Gainesville, Florida.