REGISTRATION OF CROP CULTIVARS

In 10 location-year comparisons, UC 566 yielded more than the 3 leading California cultivars, 'Briggs,' CM 67, and Numar, by 19, 10, and 11%, respectively. The 11% increase over Numar can be attributed largely to its tolerance to the barley yellow dwarf virus and the 10% increase over CM 67 to the improved straw quality and superior quality of the Numar germplasm. With a yield advantage of 19% over 'California Mariout' (a cultivar common in the pedigree of both parents), it appears to combine yield potential from both parents.

UC 566 was released by the University of California, Davis in 1972. It is recommended for production in all areas where Numar and CM 67 have been successfully grown and will be more competitive than either parent with the cultivar Briggs in the Sacramento Valley.

Breeder seed will be maintained by the Department of Agronomy and Range Science, University of California, Davis.

REGISTRATION OF ARLINGTON RED CLOVER

R. R. Smith, D. P. Maxwell, E. W. Hanson, and W. K. Smith

'Arlington' red clover (Trifolium pratense L.) was released by the Minnesota Agricultural Experiment Station on March 1, 1973. No major selection was practiced in the development of this cultivar, which originated from P.I. 251390 from Iran. Seven increase generations were grown from seed obtained from the USDA North Central Regional Plant Introduction Station at Ames, Iowa.

The University of Minnesota and Minn-Dak Growers Association cooperatively tested 69 collections of annual canarygrass. Most collections were inferior to the commercial checks, but P.I. 251390 yielded significantly more than the best commercial strain in trials at both Robbin and Rosemount, Minnesota.

Arlington is a large headed, late-maturing, and high-yielding cultivar suitable for feeding both caged and wild birds. Like other annual canarygrass, it tillers profusely and lodges severely when soil fertility is high and moisture plentiful. Arlington can be sown with a grain drill and combine-harvested either direct or from the windrow. The compact, oval shaped, spike-like panicles retain seed firmly so that shattering losses are usually small.

Seed classes of Arlington will include breeder, foundation, registered, and certified. The Minnesota Agricultural Experiment Station, St. Paul, MN 55101, will maintain breeder seed by removing off-type plants from breeder seed plots or by growing head selections in individual head-rows and discarding off-type rows.

REGISTRATION OF ARLINGTON RED CLOVER

R. R. Smith, D. P. Maxwell, E. W. Hanson, and W. K. Smith

'Arlington' red clover (Trifolium pratense L.) was released by the Minnesota Agricultural Experiment Station on March 1, 1973. No major selection was practiced in the development of this cultivar, which originated from P.I. 251390 from Iran. Seven increase generations were grown from seed obtained from the USDA North Central Regional Plant Introduction Station at Ames, Iowa.

The University of Minnesota and Minn-Dak Growers Association cooperatively tested 69 collections of annual canarygrass. Most collections were inferior to the commercial checks, but P.I. 251390 yielded significantly more than the best commercial strain in trials at both Robbin and Rosemount, Minnesota.

Arlington is a large headed, late-maturing, and high-yielding cultivar suitable for feeding both caged and wild birds. Like other annual canarygrass, it tillers profusely and lodges severely when soil fertility is high and moisture plentiful. Arlington can be sown with a grain drill and combine-harvested either direct or from the windrow. The compact, oval shaped, spike-like panicles retain seed firmly so that shattering losses are usually small.

Seed classes of Arlington will include breeder, foundation, registered, and certified. The Minnesota Agricultural Experiment Station, St. Paul, MN 55101, will maintain breeder seed by removing off-type plants from breeder seed plots or by growing head selections in individual head-rows and discarding off-type rows.

2 Professor, Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul.