similar to 'Sonora', 'Mesa Sira', and 'Hayden'. Production under relatively disease-free conditions has been equal to or better than other cultivars grown in low desert valley areas. Its moderate level of resistance to Phosphorapha root rot and the low desert valley summer disease complex has been superior to non-dormant varieties like 'Sonora', 'Mesa Sira', and 'Moapa'. It is resistant to this spotted alfalfa aphid and is particularly superior in resistance to biotype Ent F when compared with Moapa, Sonora, and Mesa Sira. Pea aphid (Acysteioaphis pisum, (Harri) resistance of UC Salton is superior to WL 508. It is susceptible to the blue alfalfa aphid (A. kondi, Shinji) but the reaction is less susceptible than Moapa, 'Moapa 69', Sonora, 'Sonora-70', Haysten, 'El Unico', and Mesa Sira. UC Salton is susceptible to clown mites (Paronyphara trifurcata (d By) and Stenphyl- lium leaf spot (Stenphylium botryosum (Walr)). Seed classes for UC Salton will be breeder, foundation, and certified. Breeder seed will be maintained by the University of California, Department of Agronomy and Range Science, Davis, Calif. If the supply of breeder seed should be depleted, a lot of foundation seed shall be set aside and used to produce subsequent foundation seed.

UC Salton was favorably reviewed by the National Certified Alfalfa Variety Review Board at its December, 1971 meeting. No application will be made for variety protection.

REGISTRATION OF BLAZER BARLEY1 (Reg. No. 151)
R. A. Nilen, C. E. Muir, and A. J. Lejeune2

Blazer barley (Hordeum vulgare L.), CI 15497, was developed by the Washington State University Agricultural Research Center and released 1 Apr, 1974. Prior to release it was tested as WA6704-62. Blazer resulted from a single F2 plant selected in 1962 from the cross 'Traill'/WA1038. WA1038 was selected from the M2 of a thermal neutron-treated F2 population from the cross Orange Lemma (CI 5649)/Gem' (CI 7245). This recombinant was homozigous for white lemma but possessed the high alpha-amylase activity associated with the Orange Lemma gene.

Blazer is a six-rowed, rough-awned, spring barley. The medium yellow kernels have a white adjacent hull, a white or colorless aleurone, and short hair rachilla. The spike is erect, moderately dense, somewhat pyramidal in shape and distinctly six-rowed with little or no overlapping of the lateral kernels. The rachis edge is smooth and the glumes are covered with short fine hairs. The disease reaction of Blazer is unknown.

In extensive yield trials in southeastern Washington over a period of 6 years at four locations, Blazer outyielded the midwestern malting varieties, 'Traill' and 'Larker', by nearly 780 kg/ha and the feed barley 'Unitan' by an average of about 280 kg/ha. However, the yield of Blazer was exceeded by 'Stepstone', a new six-rowed spring feed barley, by about 450 kg/ha.

Blazer is medium in maturity and midl. Compared with 'Traill and Larker, it is shorter and stiffer swayed, more shatter resistant, and a week later in heading. Blazer is well adapted to the higher rainfall areas of eastern Washington and adjoining areas of northern Idaho.

In 6 years of yield trials at four locations in southeastern Washington, Boyer outyielded Kamiak and Luther by over 280 and 590 kg/ha, respectively. Over a period of 3 years, it had a consistently high average yield record in the USDA Pacific Northwest Winter Barley Nursery. Boyer is recommended for areas in the Pacific Northwest favorable to winter barley survival.

Breeder seed will be maintained by the Washington State University Agricultural Research Center, Pullman, WA 99164 and foundation seed stocks are available through the Washington State Crop Improvement Association. Seed production under certification will proceed from breeder through foundation, registered, and certified seed classes.

REGISTRATION OF KENNY TALL FESCUE1 (Reg. No. 12)
R. C. Buckner, P. B. Burris, II, and L. P. Bush2

Kenny tall fescue (Festuca arundinacea Schreb), was developed cooperatively by the Kentucky Agricultural Experiment Station and the ARS, USDA.

Kenny is a synthetic of progenies of 11 42-chromosome derivatives of annual ryegrass × tall fescue hybrids which were selected for plant vigor, soft lax leaves, and high moisture content of green forage during drought stress.

Since 1970, the cultivar has been compared with commercial varieties of tall fescue for forage quality and agronomic characteristics in 21 states.

Kenny has seedling vigor characteristics of tall fescue. When managed as hay and pasture, it had 12% higher dry matter yields than 'Kentucky 31'. It was consistently better than Kentucky 31 in digestibility, significantly lower in crude fiber and lignin, and essentially equal in pool glucose (an alkaid that inhibits digestibility in ruminants) content and crude protein. Trampration, water-use efficiency, CO2 diffusion, photosynthesis, and dry mater production are related to pore size, frequency, and distribution.