USDA, and released in 1966. Along with the authors, major contributions to the breeding of Benhur were made by two former staff members of Purdue and SEA.*

Benhur was tested earlier as Purdue 5724A1-3. The parentage is ‘Knox 62’ sib/6/‘Vigo’/4/‘Trumbull’/2/‘Hope’/‘Husser’/3/‘Fairfield’ sib (Purdue 427A1-1-3)*8/5/‘Kenya Farmer’. Plant selections were made in the F1, F2, and F3 generations. Progenies of 97 plants selected in the F2 generation and judged as uniform in the F2 generations were bulked to form the initial lot of breeder seed.

The development of Benhur provided a short, very early cultivar, with resistances to the major wheat diseases and to Hessian fly (Mayetiola destructor Say). Its release in 1966 was timely since Benhur was resistant to new races of leaf rust (Puccinia recondita Rob. ex Desm. f. sp. tritici Erik.), powdery mildew (Erysiphe graminis DC. f. sp. tritici em. Marchal) and Hessian fly attacking ‘Monon’.

Benhur was resistant to the leaf rust races in Indiana when it was released. It is moderately resistant to powdery mildew and highly resistant to stem rust (Puccinia graminis f. sp. tritici Erikis. & E. Henn.) and to loose smut (Ustilago tritici (Pers.) Petr.) and to loose smut (Ustilago tritici (Pers.) Petr.) races GP, A, and C. Benhur has moderate resistance to powdery mildew and to loose smut.

Benhur has moderately short (105 cm), erect, strong yellow stems. Glumes are midlong and midwide with rounded to square shoulders. The beak is obtuse, midwide, and about 0.5 mm long. Awnlets are yellow and are generally 1 to 15 mm long. Kernels are red, ovate, soft, with a rounded cheek, and a middeep crease. The germ and brush are of medium sizes.

Benhur was produced on an estimated 20% of the Indiana acreage by 1970 but was soon largely replaced with the cultivar ‘Arthur’ (Reg: No. 551), released in 1968.

Breeder seed of Benhur will be maintained by Purdue University.

REGISTRATION OF RILEY AND RILEY 67

Riley and Riley 67 are similar except for the added resistance to leaf rust in Riley 67. Riley and Riley 67 have the Ha Ha type of resistance to leaf rust of the Chinese type derived from ‘Knox’ (Mayetiola destructor Say) races GP, A, and C. Riley and Riley 67 have specific, adult resistance to leaf rust in Riley 67. Riley has specific, adult resistance to leaf rust in Riley 67.

Riley and Riley 67 were released as a replacement for ‘Monon’ and ‘Knox’. Riley 67 was developed to provide an early wheat with resistance to loose smut (Ustilago tritici (Pers.) Petr.), powdery mildew (Erysiphe graminis DC. f. sp. tritici em. Marchal) and Hessian fly attacking ‘Monon’.

Riley was developed to provide an early wheat with resistance to leaf rust (Puccinia triticina) races GP, A, and C. Riley was developed to provide an early wheat with resistance to leaf rust in Riley 67. Riley has specific, adult resistance to leaf rust in Riley 67.

Riley was released in 1965 and Riley 67 in 1967. Along with the authors, major contributions to the breeding of Riley and Riley 67 were made by two former staff members of Purdue University and SEA.

Riley was developed to provide an early wheat with resistance to leaf rust (Puccinia triticina) races GP, A, and C. Riley was developed to provide an early wheat with resistance to leaf rust in Riley 67. Riley has specific, adult resistance to leaf rust in Riley 67. Riley was released in 1965 and Riley 67 in 1967. Along with the authors, major contributions to the breeding of Riley and Riley 67 were made by two former staff members of Purdue University and SEA.

Riley was developed to provide an early wheat with resistance to leaf rust (Puccinia triticina) races GP, A, and C. Riley was developed to provide an early wheat with resistance to leaf rust in Riley 67. Riley has specific, adult resistance to leaf rust in Riley 67. Riley was released in 1965 and Riley 67 in 1967. Along with the authors, major contributions to the breeding of Riley and Riley 67 were made by two former staff members of Purdue University and SEA.