about one point lower in iodine value of the oil, but slightly higher in seed yield. (Table 1).

The plant is of mid-height and has spreading panicles. The flowers are blue, bolls are semi-dehiscent, and seeds are small to mid-size and chocolate brown. Marine 62 is an early-maturing variety adapted to late sowing. Its rust immunity is conditioned by the L gene. Resistance to flax wilt, *Fusarium oxysporium* Schlecht. f. *lini* (Bolley) Snyder, and H. A. Mann, is satisfactory. Marine 62 is nearly as tolerant as Marine to powdery mildew, *Mycosphaerella linorum* (Wr.) Garcia Rada and Stevenson (Table 2).

REGISTRATION OF AB-110 OATS

(Reg. No. 173)

Darrell D. Morey

AB-110 (C.I.-7148) was introduced from the Coastal Plain Experiment Station, Tifton, Georgia, in 1957 as a cooperative endeavor from that station, the North Florida Experiment Station, Quincy, Florida, and the Crops Research Division, ARS, U.S. Department of Agriculture. It was developed to replace Southland as an early forage oat for Florida and South Georgia where disease resistance is of major importance.

AB-110 resulted from the cross Minnesota 0–200–10 × Southland made by D. D. Morey at Gainesville, Florida, in February, 1951. Minnesota 0–200–10 was a selection from the cross (Hajira–Jeanette × Bond–Rainbow) × Santa Fe. A few F2 seeds of Minnesota 0–200–10 were obtained from H. K. Hayes, Chief of the Division of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota, in September, 1950. This selection was used as a parent because of its superior resistance to crown and stem rust. The history of Southland has been reported by Chapman.

During the F2 to F6 generations, populations were grown both at Tifton and Quincy and selected for disease resistance and early vigor. A severe epidemic of stem rust and crown rust at both stations in 1954 led to the discovery that selections from the cross 0–200–10 × Southland had combined resistance to stem rust races 7, 7A, and 8 and to the races of crown rust then prevalent. Much of the disease testing was done by R. W. Earhart, USDA Plant Pathologist at Gainesville, Florida. In 1954, 50 panicle rows were grown at Aberdeen, Idaho, by Harland Stevens from panicles furnished equally from Tifton and Quincy. The tenth row (AB-110) of the series, a selection from Tifton, proved to be the most uniform and to have the highest degree of disease resistance.

AB-110 Foundation seed was increased on about 10 acres in 1957 by Roy Stroschein near Sterling, Idaho. About 700 bushels of high quality seed from Idaho were distributed to South Georgia growers in the fall of 1957. It was an urgently needed and timely replacement for Southland oats.

The AB-110 variety has the rapid early growth of Southland. It produces an abundance of early forage in the fall, and, if not damaged by severe cold, it will produce large amounts of winter forage. It is a tall variety and, unless carefully managed by proper grazing, may lodge some at harvest time. Temperatures of 18° or lower will damage the stands, especially after heavy grazing. Grain yields have not been high, but are considered adequate for a dual-purpose oat. The grains are plump and bright yellow in color. They are pure for nonfluorescence. The grains are smooth, with few awns and no hairs on the rachilla or base of the kernels.

For several years AB-110 ranked as one of the leading selections in the International rust nurseries for combined resistance to crown rust and stem rust. It has Santa Fe resistance to crown rust and bridge rust. AB-110 has been released to growers in 1960.

REGISTRATION OF BLOUNT OATS

(Reg. No. 175)

N. I. Hancock

BLOUNT (C.I. 7769, Tenn. 54–8) originated as a selection from the cross (LeConte × Fulgrain Strain 6) × Santa Fe made by N. I. Hancock at the Tennessee Agricultural Experiment Station, Knoxville, Tenn., in 1946. The history of Blookt and of the parent varieties LeConte, Fulgrain Strain 6, and Santa Fe have been published. Blount was named in honor of William Blount, the first governor of Southwest Territory.

ALAMO-X (C.I. 7648, Texas Selection Irradiated Alamo 2276) was developed by the Texas Agricultural Experiment Station in cooperation with the U.S. Department of Agriculture. Alamo, C.I. 5571, oats were irradiated with 25,000 X-rays by the Brookhaven National Laboratory in 1953. Of several generations screened for lines resistant to Helminthosporium species and to crown rust races 290 and 292, one strain was selected by Paul E. Pawlisch. These were increased to about 800 bushels, but only one was released to growers in 1960.

Alamo-X is similar to Alamo oats except that it has a much heavier awn. This frequently makes the test weight low. During the period 1958–61, Alamo-X was tested for rust and lodging resistance and yielding ability in comparison with Alamo and some commercial varieties. The new strain is resistant to *Helminthosporium* and crown rot, two Helminthosporium species to which Alamo is susceptible. Alamo-X also is resistant to races 304, 216 of crown rust to which Alamo is susceptible. Alamo-X is resistant to rust races 294 whereas Alamo was not resistant to this new race. The strains are similar in maturity, standing qualities, and lodging characteristics. During the severe winter season which occurred throughout Texas during the winter of 1961–62, it was found that Alamo-X is considerably more resistant to low temperatures than Alamo. It therefore has wide adaptation for fall seeding.

Yield trials were conducted throughout Texas and other Department of Agriculture regional nurseries. Data collected in Texas show that Alamo-X was equal or superior to Alamo in all areas for both grain and forage production. Greatly increased be obtained in the descriptive leaflet “Alamo-X”, USDA Agricultural Experiment Station, L-563, March 1962.

1 Registered under a memorandum of understanding between the Crops Research Division, ARS, USDA, and the American Society of Agronomy.

2 Agronomist in charge of small grain research, Tennessee Agr. Exp. Sta. and Crops Research Division, ARS, USDA.