ing on soils of high fertility where lodging in the commonly grown varieties LeConte and Forkedeer may occur. Blount had an average yield of 85.8 bushels per acre in Tennessee tests during the 5 years, 1956–60, compared with 76.6, 79.2, and 80.9 for Forkedeer, LeConte, and Victorgrain 48–93, respectively.

The panicle of Blount is longer and more open than the panicle of LeConte. The mature tillers are 5" to 9" longer than LeConte or Forkedeer. The breaking strength of the internodes on the stem averages around 1.93 pounds per inch as against 1.11 pounds on stems of Forkedeer. The diameters and wall thickness of the stems are larger than those of Forkedeer. In the seedling stage Blount is a semiprostrate type and is not as winter hardy or as early as Forkedeer. The main feature of Blount is its ability to stand up at dead ripe stage under adverse weather conditions and under high applications of fertilizers.

REGISTRATION OF ONEIDA OATS ¹

(Reg. No. 176)

N. F. Jensen

Oneida (C.I. 7458, N. Y. 618a1–1–2–12) was developed by N. F. Jensen at the Cornell University Agricultural Experiment Station, Ithaca, New York, in cooperation with the U. S. Department of Agriculture and other experiment stations. It was selected from the cross Goldwin × C.I. 4192 made at Ithaca by H. H. Love and W. T. Craig in 1944. C.I. 4192 is from the hybrid of Victoria × Rainbow. The line from which Oneida was selected was established by an F₁ plant selection. This population was field tested for several years and the final selection which became Oneida was made in 1956. Oneida was distributed in New York in 1960 following an Arizona winter increase totaling approximately 1,000 bushels.

Oneida is a medium tall, medium late, moderately strong strawed spring oat. Grain color is yellow; kernels are medium long, medium plump with low hull content. Oneida is highly resistant to loose smut. In 4 years of examining plants grown from seed inoculated with a mixture of loose smut inoculum, not a single smutted plant was found. An important factor in the release of Oneida was its field tolerant reaction to the black stem (Septoria) disease. Oneida carries the A gene for stem rust reaction.

Oneida has been tested extensively in New York and in cooperative regional nurseries. The origin, history, description and performance of Oneida in New York were published.⁵ Additional information on its performance in extensive regional tests in the eastern United States during 1959–1961 was reported.⁴–⁶

¹ Registered under memorandum of understanding between the Crops Research Division, ARS, USDA, and the American Society of Agronomy.
² Professor of Plant Breeding, Cornell University, Ithaca, New York.
⁴ Coffman, F. A., Murphy, H. C., and Stevens, Harland. Results from the national cooperative coordinated oat breeding nurseries for 1959. USDA, ARS, CRD. (Processed) 1960.
⁵ Coffman, F. A., Murphy, H. C., and Stevens, Harland. Results from the national cooperative coordinated oat breeding nurseries for 1960. USDA, ARS, CRD. (Processed) 1961.

REGISTRATION OF RADAR 2 OATS ²

(Reg. No. 178)

Darrell D. Morey

Radar 2 (C.I. 7340) originated from the hybrid 48–93 X (Bond-Rainbow X Hajira-Joanette) X Landhafer made by S. J. Hadden at Coker’s Pedigreed Seed Company, Hartsville, South Carolina, in 1952. The history of the parent has been published. ³ The (Bond-Rainbow X Hajira-Joanette) X Landhafer parent originated from the Minetaro-1 parent. Among other qualities, it contributed resistance to crown rust.

Radar 1 was introduced from the Coastal Plain Experiment Station, Tifton, Georgia, in 1958 as a cooperation between Coker’s Pedigreed Seed Company, Crafts Pedigreed Seed Company, and the Crops Research Division, ARS, U.S. Department of Agriculture. Radar 1 is a maturity variety with strong straw. It is resistant to crown rust, but susceptible to the virulent new races of Southern oat smut. Radar 1 has the ABC genes for resistance to Helminthosporium victoriae, M. & M. Radar 2 is slightly taller than Radar 1. They have the same disease resistance and strong straw. Radar 2 has given the highest yields of forage, whereas Radar 1 has combined resistance to crown and stem rust. Radar 2 is slightly taller than Radar 1, with higher yields of forage, whereas Radar 1 is slightly taller than Radar 2. Radar 1 has combined resistance to crown and stem rust.

Radar 2 was found to be not pure for plant color in 1955 season, Harland Stevens helped to increase the Radar oats breeding program.

In 1953, S. J. Hadden sent F₁ seeds from the Radar 2 nursery to the Coastal Plain Experiment Station, Tifton, Georgia, for testing under disease conditions. Lot 44-7-4 contributed one F₂ plant selection for Radar 2 which, through subsequent selection and testing, became Radar 2 varieties. Both crops were widespread in the Tifton nursery when a group of local pathologists came in April, 1954. The Crop was probed so promising for rust resistance that H. C. Murphy, A. T. Wallase, and R. W. Earhart helped to select the F₁ plants which were field tested for 4 years of examining plants grown from seed inoculated with a mixture of loose smut inoculum, not a single smutted plant was found. An important factor in the release of Oneida was its field tolerant reaction to the black stem (Septoria) disease. Oneida carries the A gene for stem rust reaction.

Oneida has been tested extensively in New York and in cooperative regional nurseries. The origin, history, description and performance of Oneida in New York were published. ³ The (Bond-Rainbow X Hajira-Joanette) X Landhafer parent originated from the Minetaro-1 parent. Among other qualities, it contributed resistance to crown rust.

Radar 2 was introduced from the Coastal Plain Experiment Station, Tifton, Georgia, in 1958 as a cooperation between Coker’s Pedigreed Seed Company, Crafts Pedigreed Seed Company, and the Crops Research Division, ARS, U.S. Department of Agriculture. Radar 1 is a maturity variety with strong straw. It is resistant to crown rust, but susceptible to the virulent new races of Southern oat smut. Radar 1 has the ABC genes for resistance to Helminthosporium victoriae, M. & M.