REGISTRATION OF OKLAN BERMUDAGRASS
(Reg. No. 12)

Charles M. Taliaferro and William L. Richardson

'OKLAN' bermudagrass [Cynodon dactylon (L.) Pers.] was released in 1974 by the Oklahoma Agric. Exp. Stn. (OAES). It is a highly infertile, vegetatively propagated, F₁ hybrid plant selected in 1968 from an abandoned bermudagrass breeding nursery whose many plants had grown together. Although we cannot positively identify Oklan's parents we believe the male parent is OAES accession 9945A (P.I. 206427), C. dactylon var. dactylon. The female parent is either OAES accession 10429 (P.I. 288221) or 10325 (P.I. 288222). Accessions 10429 and 10325 belong to the taxon C. dactylon var. crousii (Camus) Harlan et deWet and both were collected in the Malagasy Republic. Accession 9945 was collected near Elazig, Turkey. Oklan was tested under the experimental designation, OK-69B.

Compared to 'Midland,' Oklan grows taller, has larger stems and broader and longer leaves. It produces few seed heads compared to other cultivars, normally remaining vegetative throughout most of the growing season. The inflorescences of Oklan bear racemes much

2Professor and assistant professor, respectively, Dep. of Agronomy, Oklahoma State Univ., Stillwater. Accepted 16 Jan. 1980.

REGISTRATION OF BEESON 80 SOYBEAN
(Reg. No. 133)


'BEESON 80' soybean [Glycine max (L.) Merr.] is a composite of 21 phytophthora rot (caused by Phytophthora megasperma Drechs var. sojae A. A. Hildeb) resistant F₁ lines from the backcross Beeson × 'Arksoy'. Hybridization, disease evaluations, and selection of Beeson 80 were done at the Purdue Univ. Agric. Exp. Stn. in cooperation with AR-SEA-USDA.

The initial cross of Beeson × Arksoy was made in 1973. The F₁'s were backcrossed to Beeson. F₁ plants from this backcross were inoculated with P. megasperma var. sojae, race 3, and surviving plants were again backcrossed to Beeson. This process was repeated for seven successive backcrosses. F₄ plants of Beeson × Arksoy were inoculated with race 3 of P. megasperma var. sojae in the greenhouse in 1976. F₅ seedlings from surviving plants were inoculated in the greenhouse in the spring of 1977, and surviving plants grown to maturity. Seventy-four F₅ lines were grown in 2-m rows in 1977. The F₅ lines phenotypically identical to Beeson were harvested individually, and progeny were tested for reaction to races 1, 3, and 6 of P. megasperma var. sojae. Twenty-one F₅ lines that were homozygous resistant in their reaction to the above races were composited and evaluated as C Beeson PR in The Uniform Soybean Tests, Northern States. Both cultivars have purple flowers, green pods, and dull yellow seeds with imperfect black hila. Beeson 80 has the Rps₁, Rps₂, alleles, in addition to races 1, 3, and 6, it is also resistant to races 2, 7, 8, and 9 of P. megasperma

2Professor and assistant professor, respectively, Dep. of Agronomy, Oklahoma State Univ., Stillwater. Accepted 16 Jan. 1980.

REGISTRATION OF BSR 301 SOYBEAN
(Reg. No. 134)

H. Tachibana, L. C. Card, J. B. Bahenf, and C. W. Wetter

'BSR 301' soybean [Glycine max (L.) Merr.] was released by AR-SEA-USDA, the Iowa Agric. and Home Economies Exp. Stn., and the Puerto Rico Agric. Exp. Stn. It has moderate yield and pod yield (caused by Phialophora gregata (All.) W. Gams.) that is superior to other public cultivars. BSR 301 is recommended specifically for fields in which soybean was grown in the previous crop year. In such conditions, BSR 301 has about a 10% yield advantage compared to other public cultivars of similar maturity. BSR 301 is a F₄ plant selection from the cross L15 × AP68-1016.