and uniformity of plant height, aggressiveness of creeping roots, and
days to maturity were evaluated in clonal and polycross progeny
tests. The best eight lines were grown under isolation and were used
to produce syn 1 generation seed. The syn 1 seed was used for a field
increase of syn 2 seed, which is designated as Breeder seed.
Elbee plants are tufted with erect leaves, up to 30 cm or more long,
and stems 45 to 90 cm tall. The leaves are greyish green contrasting
those of 'Crittana' which are light green. The spike ranges from 10 to
18 cm long. The scabrous or pubescent glumes are acute or awn-
pointed while the lemmas are awnless or awn-tipped. The plants are
strongly rhizomatous, and, like Crittana, form a tight sod under dry-
land conditions.
The cultivar is well adapted for pasture and hay production in
rangeland seedings in the Canadian prairie region, and
repair and revegetation of industrially disturbed
and other areas that will receive little or no
will grow on a wide range of soils but does best on
textured soils and tolerates moderate amounts of
seedling vigor and is readily established on dryland
but not
Seed of Elbee is multiplied through Breeder
Certified seed classes. Breeder seed will be maintained
search Station, Agriculture Canada, Lethbridge;
The multiplication and distribution of Foundation
will be handled by the SeCan Association, 885 Meade
Suite 512, Ottawa, Ontario K2C 3N2.

Registration of Germplasms

REGISTRATION OF W10 MULTIPLE PEST RESISTANT ALFALFA GERMPLASM
(Reg. No. GP 116)
J. H. Elgin, Jr.*

W10 alfalfa (Medicago sativa L.) germplasm with multiple pest re-
sistance was developed cooperatively by ARS-USDA and the Wash-
ington Agricultural Experiment Station. The development and seed
increase of W10 was carried out at the Irrigated Agriculture Research
and Extension Center, Prosser, Wash., between April 1972 and
October 1973. The Syn 3 generation was released as germplasm to
scientists in April 1981.
W10 was developed from intercrossing three cultivars and three
germplasm lines; 'Arc', 'Agate', 'Apalachee' (stem nematode re-
sistant cultivar), Beltsville 2-An4, Beltsville 3-An4, and Nev. Syn
WW (root-knot nematode resistant germplasm6). Each cultivar and
germplasm carried a high level of resistance to one or more disease,
insect, or nematode pest. Emasculated single crosses among the six
parents were made in the greenhouse using 50 plants from each. Fifty
plants from each of the resultant 15 single crosses (750 plants total)
were combined and intercrossed by hand in the greenhouse to pro-
duce W10 Syn 1 seed.
W10 Syn 2 seed was produced in the greenhouse by hand inter-
crossing 750 Syn 1 plants. Each Syn 1 plant traced maternally to a
different one of the 750 Syn 0 plants. Equal amounts of Syn 2 seed
were combined and intercrossed by hand in the greenhouse to pro-
duce W10 Syn 3 seed.
W10 has moderate to low levels of each type of pest resistance
present in the six parental lines. The levels of resistance should be
adequate to be of economic value under field conditions. In labora-
tory tests at Beltsville, Md., the percentage of plants resistant to
anthracnose, caused by Colletotrichum trifolii Bain (Race 1) for
W10, Arc, and 'Saranac' was 41, 85, and 0, respectively. In tests at
St. Paul, Minn., the percentage resistant plants to bacterial wilt
cauised by Corynebacterium insidiosum (McCul) H. L. Jens. for
W10, 'Vernal', and 'Narragansett' was 28, 33, and 1, respectively;

REGISTRATION OF MO-20 BIRDFOOT TREFOIL GERMPLASM
(Reg. No. GP 39)
P. R. Beuselinck and J. D. Baldridge

Missouri-20 birdsfoot trefoil (Lotus corniculatus) was
developed and released by ARS-USDA and the Mo.
Stn. on 1 May 1981.
Missouri-20 evolved from a program in which
breeders develop acceptable pasture-type trefoil from seeds
var 'Empire.' Thirty-nine clones were identified
each year's assessment selection for greater resistance