ble agronomic characters. It was released 11 Dec. 1982 as germplasm for peanut breeding programs.

Tifrust-14 (ICG 7882) was mass selected from a line (D. H. Timothy No. 200) collected as an unnamed local cultivar from a storekeeper in the village of Juanjui, Peru, who obtained seed from farmers cultivating it on sandbars of the Rio Guayabamba in 1966. It was introduced to the USA as PI 314817.

When 245 peanut accessions were inoculated in a dew chamber or plastic tent at Frederick, MD, between 1967 and 1969, PI 314817 was resistant to rust cultures from Puerto Rico and Texas. Plants of this accession exhibited field resistance to rust when 700 A. hypogaea accessions were exposed to a natural epi-phytotat at Tifton, Georgia in 1976. Resistance was confirmed at the USDA winter nursery in Puerto Rico during 1977, 1978, and 1979.

Selected progeny from the line were among 6,000 peanut accessions evaluated for rust reaction in field trials at ICRISAT, 1979-81, where infecter rows and spreader plants were used to insure uniformity of disease pressure. Tifrust-14 was among the most resistant lines in each environment.

Tifrust-14 has erect (bunch) plants with sparse, sequential branching, inflorescences in some main stem leaf axils, and other characteristics of A. hypogaea fastigiata fastigiata. Leaves are light green, flower standards are orange, and the fruit mature at about 135 to 140 days in Georgia. Pods are quite short and mainly three-seeded. Seed average 370 mg, lack dormancy at maturity, and have a light tan testa (179D, in Royal Horticulture Society Colour Chart). The genotype is moderately susceptible to the leafspots, Cercospora arachidicola Hori and Cercosporidium personatum (Berk. and Curt.) Deighton, in field trials in Georgia.

For breeding research, 25 seed of Tifrust-14 will be provided upon written request and agreement to appropriately recognize its source as a matter of open record when this germplasm contributes to the development of a new cultivar or genetic information.

Seed stocks will be maintained and distributed by the Dept. Agronomy Univ. of Georgia, Coastal Plain Station, Tifton, GA 31793, and by the International Crops Research Institute for the Semi-Arid Tropics, Panancheru P. O., Andhra Pradesh 502 324, India.

REGISTRATION OF SUGARBEET GERMPLASM FOR CURLY TOP RESISTANCE
(Reg. Nos. GP67 to GP69)

J. C. Theurer and D. L. Mumford

Three sugarbeet (Beta vulgaris L.) breeding lines with curly top virus disease have been developed by ARS-USDA at Logan, Utah. These lines have been evaluated with the Beet Sugar Development Foundation Agric. Exp. Stn. A limited quantity of breeders is available for pro-rata distribution to breeders upon request to ARS, USDA, Sugarbeet Research, Logan, UT 84322.

L34 (Reg. No. GP70) is an S, self-fertile near type-O, multigerm inbred line selected for curly top. It is more vigorous than L35 and has a light tan testa (179D, in Royal Horticulture Society Colour Chart). The genotype is moderately susceptible to the leafspots, Cercospora arachidicola Hori and Cercosporidium personatum (Berk. and Curt.) Deighton, in field trials in Georgia.

L30 (Reg. No. GP71) is an S, self-fertile inbred derived from a heterogenous population. It is resistance for C502aa x C502Aa. The line was widely used as a parent in commercial cultivars. The line will be useful in genetic studies requiring a homozygous, high-performing inbred line that had been selfed 16 times and was derived from a heterogeneous population of SL630 × C502aa (Reg. No. GP67) is a multigerm, self-fertile line that had been selfed 15 times. This inbred combines resistance to curly top virus disease have been developed by ARS-USDA at Logan, Utah. These lines are resistant to rust cultures from Puerto Rico and Texas.

C554 (Reg. No. GP69) is the increase of a self-fertile, green hypocotyl, type-O, multigerm line that had been selfed 16 times and has a light tan testa (179D, in Royal Horticulture Society Colour Chart). The genotype is moderately susceptible to the leafspots, Cercospora arachidicola Hori and Cercosporidium personatum (Berk. and Curt.) Deighton, in field trials in Georgia.

Stalk blight is a serious disease of the sugarbeet seed crop in Oregon and is caused by Fusarium oxysporum sp. C554 rarely shows any stalk blight infected plants. This inbred is a useful source of resistance to this disease and as a highly homozygous line for genetic and breeding studies.

REGISTRATION OF FOUR SUGARBEET GERMPLASM LINES
(Reg. No. GP66 to GP69)

J. S. McFarlane, I. O. Skoyen, and R. T. Lewellen

Four sugarbeet (Beta vulgaris L.) breeding lines were developed by ARS-USDA in cooperation with the Beet Sugar Development Foundation. Breeder seed will be maintained at the U.S. Agricultural Research Station, P. O. Box 5098, Salinas, CA 93917. The line will be useful in genetic studies requiring a homozygous, high-performing inbred line that had been selfed 16 times and was derived from a heterogeneous population of SL630 × C502aa (Reg. No. GP67) is a multigerm, self-fertile inbred line that had been selfed 15 times. This inbred combines resistance to curly top virus disease have been developed by ARS-USDA at Logan, Utah. These lines are resistant to rust cultures from Puerto Rico and Texas.

C554 (Reg. No. GP69) is the increase of a self-fertile, green hypocotyl, type-O, multigerm line that had been selfed 16 times and has a light tan testa (179D, in Royal Horticulture Society Colour Chart). The genotype is moderately susceptible to the leafspots, Cercospora arachidicola Hori and Cercosporidium personatum (Berk. and Curt.) Deighton, in field trials in Georgia.

Stalk blight is a serious disease of the sugarbeet seed crop in Oregon and is caused by Fusarium oxysporum sp. C554 rarely shows any stalk blight infected plants. This inbred is a useful source of resistance to this disease and as a highly homozygous line for genetic and breeding studies.