REGISTRATION OF OURAY BEAN
(Reg. No. 37)

D. R. Wood ¹

‘Ouray’ pinto bean (Phaseolus vulgaris L.) was developed and released by the Colorado State University Experiment Station in 1972. It was tested under the designation Colo 15B. It has an upright, bush growth habit and is characterized by a large sturdy stem, prolific branching, with a heavy set of flowers and fruits that develop on medium-long pedicels from the nodes of the crown area. Late developing flowers produced near the ends of determinate branches often abort. Seed is medium-to-large in size (42 g/100 seeds) with a typical pinto pattern. Ouray matures in about 84 days at Ft. Collins, Colo.

Ouray is resistant to the Type and the New York 15 strains of the bean common mosaic virus and to some races of rust caused by Uromyces phaseoli (Pers.) Wint. var. typica, but is susceptible to curly top virus and very sensitive to bean common blight caused by Xanthomonas phaseoli (E. F. Sm) Dows.

‘Ouray’ originated as an F₂ selection from the cross of a bush pinto (derived from a cross between ‘Sanilac’ and ‘U.I. 111’) and a rust resistant pinto selection (from a population provided by W. J. Zaumeyer at Beltsville, Md. from a cross between ‘Light Red Kidney’ and pinto 5439-1). The bush habit of Ouray is derived from Sanilac.

In yield trials conducted at Ft. Collins (1966-1970), Ouray yielded 3,102 kg/ha which was about 95% of that of U.I. 111 in the same years. Trials to evaluate the harvesting of Ouray directly with a combine without the pulling and windrowing operations were not successful. Ouray is adapted to production under irrigation in the west but is relatively intolerant of high temperatures during flowering.

Seed is available in Foundation, Registered, and Certified classes. Breeder seed is available from the Agronomy Dep., Colorado State Univ., Ft. Collins, CO 80523.

REGISTRATION OF FRESA STRAWBERRY CLOVER
(Reg. No. 38)

A. A. Baltensperger, C. E. Watson, M. A. Smith, S. D. McLean, and R. E. Gaussoin ³

‘Fresa’ Strawberry clover, Trifolium fragiferum L., was released in 1981 by the Crop and Soil Sciences Department (formerly Agronomy Department) and the Agricultural Experiment Station of New Mexico State University. It was tested under the experimental designation of NMSC-1 and is a population of selected plants from an introduction from Turkey, P. I. 204521. It is a low growing perennial legume that spreads vegetatively by stolons. Flowers are mostly pink to white, resembling a strawberry. Flower heads are dense, globose and borne on long peduncles. Seeds are yellow to brown and are similar to or slightly larger than those of white clover.

Fresa is a result of two cycles of mass selection primarily for low, dense growth. It is lower growing and produces less forage yield than the other strawberry clover cultivars tested in New Mexico. Under field conditions Fresa produced less than one-half the fresh clipped weights of ‘Palestine’, ‘O’Connor’s’ and ‘Salina’. The primary breeding objective was to develop a cultivar suitable for relatively low maintenance, as a home ground cover or possibly as a ground cover in new orchards.

Seed production of Fresa shall be on a four-generation basis: breeder, foundation, registered and certified. Seed primarily will be produced in Oregon and New Mexico. The New Mexico Agricultural Experiment Station will maintain breeder seed. The multiplication and distribution of all classes will be handled by Int. Seeds Inc., P. O. Box 168, Halsey, OR 97348.

REGISTRATION OF OLYMPIC TALL FESCUE
(Reg. No. 20)

W. A. Meyer, B. L. Rose, C. A. Rose, and C. R. Funk ³

‘Olympic’ tall fescue (Festuca arundinacea Schreb.) was developed by Pure-Seed Testing of Hubbard, Oreg., using germplasm obtained from the New Jersey Agriculture Experiment Station. Olympic was released by Turf Seed, Inc. The first certified seed was produced in western Oregon in 1981. AG-125A was the experimental designation of Olympic. Olympic is an advanced generation synthetic cultivar derived from the progenies of eight clones. Plants collected from old turf in Alabama, New Jersey, and North Carolina provided most of its parental germplasm. Clones were selected from spaced-plant nurseries for attractive appearance, freedom from disease, softness of leaves, ability to resist leaf roll during drought stress, dark green color, and promising seed yield potential. Progenies of selected clones were evaluated in closely mowed turf trials in New Jersey and Oregon. Seedlings from selected clones showing the best progeny performance were screened for resistance to

²Professor of agronomy, professor emeritus of agronomy, research assistant, research aide and research assistant Dep. of Crop and Soil Sciences, New Mexico State Univ., Las Cruces, NM 88003